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Abstract. Operational real time flood forecasting systems
generally require a hydrological model to run in real time as
well as a series of hydro-informatics tools to transform the
flood forecast into relatively simple and clear messages to the
decision makers involved in flood defense. The scope of this
paper is to set forth the possibility of providing flood warn-
ings at given river sections based on the direct comparison
of the quantitative precipitation forecast with criticalrain-
fall thresholdvalues, without the need of an on-line real time
forecasting system. This approach leads to an extremely sim-
plified alert system to be used by non technical stakeholders
and could also be used to supplement the traditional flood
forecasting systems in case of system failures. The critical
rainfall threshold values, incorporating the soil moisture ini-
tial conditions, result from statistical analyses using long hy-
drological time series combined with a Bayesian utility func-
tion minimization. In the paper, results of an application of
the proposed methodology to the Sieve river, a tributary of
the Arno river in Italy, are given to exemplify its practical
applicability.

1 Introduction

1.1 The flood warning problem

The aim of any flood warning system is to provide useful in-
formation to improving decisions such as for instance issuing
alerts or activating the required protection measures. Tra-
ditional flood warning systems are based on on-line hydro-
logical and/or hydraulic models capable of providing fore-
casts of discharges and/or water stages at critical river sec-
tions. Recently, flood warning systems have also been cou-
pled with quantitative precipitation forecasts (QPF) gener-

Correspondence to:M. L. V. Martina
(martina@geomin.unibo.it)

ated by numerical weather models (NWM), in order to ex-
tend the forecasting horizon from a few hours to a few days
(EFFS, 2001–2004). Consequently, flood forecasting sys-
tems tend to require hydrological/hydraulic models to run
in real time during flood emergencies, with increasing pos-
sibility of system failures due to several unexpected causes
such as model instabilities, wrong updating procedures, er-
ror propagation, etc.

In several countries operational flood management rests
with professional who have the appropriate technical back-
ground to interpret all of the information provided by the
real-time flood forecasting chain. However, in many other
cases, the responsibility of issuing warnings or to take emer-
gency decisions rests with non hydro-meteorology knowl-
edgeable stakeholders, this is the case for instance of flood
emergency managers or mayors.

The aim of this paper is to explore the possibility of issu-
ing flood warnings by directly comparing the forecast QPF to
a critical rainfall threshold value incorporating all the impor-
tant aspects of the problem (initial soil moisture conditions
as well as expected costs), without the need to run the full
chain of meteorological and hydrological/hydraulic real time
forecasting models. Although it should not be considered
as an alternative to the comprehensive hydro-meteorological
forecasting chain, due to the simplicity of the final product
(a couple of graphs), this approach can be an immediate tool
for non purely technical decision makers in the case of early
warnings and flash floods.

Apart from their extensive use in the United States (Geor-
gakakos, 2006) and in Central America, in Europe, the Inte-
grated Project FLOODSite (http://www.floodsite.net) among
others aims at assessing the advantage for using the rainfall
threshold approach as an alternative to the traditional ones in
the case of flash floods.
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Fig. 1. Example of a rainfall threshold and its use.

1.2 The rainfall threshold approach

The use of rainfall thresholds is common in the context of
landslides and debris flow hazard forecasting (Neary et al.,
1986; Annunziati et al., 1996; Crosta and Frattini, 2000).
Rainfall intensity increases surface landslide hazard (Crosta
and Frattini, 2003) while soil moisture content affects slope
stability (Iverson, 2000; Hennrich, 2000; Crosta et Frattini,
2001).

In the context of flood forecasting/warning, rainfall thresh-
olds have been generally used by meteorological organiza-
tions or by the Civil Protection Agencies to issue alerts. For
instance, in Italy an alert is issued by the Civil Protection
Agency if a storm event of more than 50 mm is forecast for
the next 24 h over an area ranging from 2 to 50 km2. Unfortu-
nately, this type of rainfall threshold, which does not account
for the actual soil saturation conditions at the onset of a storm
event, tends to heavily increase the number of false alarms.

In order to analyze flood warning rainfall thresholds in
more detail, following the definition of thresholds used for
landslides hazard forecast, let us define them as “the cumu-
lated volume of rainfall during a storm event which can gen-
erate a critical water stage (or discharge) at a specific river
section”. Figure 1 shows an example of rainfall thresholds
i.e. accumulated volume of rain versus time of rainfall accu-
mulation. In order to establish the landslides warning thresh-
olds, De Vita and Reichenbach (1998) use a number of statis-
tics (such as the mean), to be derived from long historical
records, of the amount of precipitation that happened imme-
diately before the event.

Mancini et al. (2002), as an alternative to the use of his-
torical records in the case of floods, proposed an approach
based on synthetic hyetographs with different shapes and du-
rations for the estimation of flood warning rainfall thresh-
olds. The threshold values are estimated by trial and error
with an event based rainfall-runoff model, as the value of
rainfall producing a critical discharge or critical water stage.
Although the Mancini et al. (2002) approach overcomes the
limitations of the statistical analysis based exclusively on

historical records, rarely sufficiently long to produce statis-
tically meaningful results, it presents some drawbacks due to
the use of an event based hydrological model. In particular,
it requires assumptions both on the temporal evolution of the
designed storms and on the antecedent moisture conditions
of the catchment, which one would like to avoid.

A rainfall threshold approach has also been developed and
used within the U.S. National Weather Service (NWS) flash
flood watch/warning programme (Carpenter et al., 1999).
Flash flood warnings and watches are issued by local NWS
Weather Forecast Offices (WFOs), based on the comparison
of flash flood guidance (FFG) values with rainfall amounts.
FFG refers generally to the volume of rain of a given du-
ration necessary to cause minor flooding on small streams.
Guidance values are determined by regional River Forecast
Centers (RFCs) and provided to local WFOs for flood fore-
casting and the issuance of flash flood watches and warnings.
The basis of FFG is the computation of threshold runoff val-
ues, or the amount of effective rainfall of a given duration
that is necessary to cause minor flooding. Effective rainfall is
the residual rainfall after losses due to infiltration, detention,
and evaporation have been subtracted from the actual rain-
fall: it is the portion of rainfall that becomes surface runoff
at the catchment scale. The determination of FFG value in an
operational context requires the development of (i) estimates
of threshold runoff volume for various rainfall durations, and
(ii) a relationship between rainfall and runoff as a function of
the soil moisture conditions to be estimated for instance via
a soil moisture accounting model (Sweeney et a., 1992).

As applied in the USA, approaches for determining thresh-
old runoff estimates varied from one RFC to another, and
in many cases, were not based on generally applicable, ob-
jective methods. Carpenter et al. (1999) developed a proce-
dure to provide improved estimates of threshold runoff based
on objective hydrologic principles. For any specific dura-
tion, the runoff thresholds are computed as the flow causing
flooding divided by the catchment area times the Unit Hy-
drograph peak value. The procedure includes four methods
of computing threshold runoff according to the definition of
flooding flow (two-year return period flow or bankfull dis-
charge) and the methodology to estimate of the Unit Hy-
drograph peak (Synder’s synthetic Unit Hydrograph or Ge-
omorphologic Unit Hydrograph). A Geographic Information
System is used to process digital terrain data and to com-
pute catchment-scale characteristics (such as drainage area,
stream length and average channel slope), while regional re-
lationships are used to estimate channel cross-sectional and
flow parameters from the catchment-scale characteristics in
the different locations within the region of application. How-
ever the quality of the regional relationships, along with the
assumptions of the theory, limits the applicability of the ap-
proach. For example, the assumption that the catchment re-
sponds linearly to rainfall excess, which is needed to apply
the unit hydrograph theory, imposes lower limits on the size
of the catchment, as small catchments are more non-linear
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than larger ones (Wang et al., 1981). But at the same time, the
assumption of uniform rainfall excess over the whole catch-
ment implicitly introduces upper bounds on the size of the
catchments where a Unit Hydrograph approach could be con-
sidered reasonable. Furthermore, the assumption of uniform
rainfall excess over the catchment also implicitly limits the
size of the catchment for which a unit hydrograph approach
is reasonable.

With reference to the second aspect of the FFG, namely
the estimation of the relationship between rainfall and runoff
as a function of the soil moisture conditions, in a recent paper
Georgakakos (2005) derives a relationship between actual
rainfall and runoff, which is taken equal to the effective rain-
fall, both for the operational Sacramento soil moisture ac-
counting (SAC) model and for a simpler general saturation-
excess model.

The results of this work have significant implications in
operational application of the methodology. The threshold
runoff is a function of the watershed surface geomorphologic
characteristics and channel geometry but it also depends on
the duration of the effective rainfall. This dependence im-
plies one more relationship that must be invoked to determine
the appropriate value and duration of the threshold runoff for
any given initial soil moisture conditions. In other words op-
erationally it is necessary to determine not only the relation-
ship between the runoff thresholds and the flash flood guid-
ance in terms of volumes but also in terms of their respective
duration.

The method presented in this paper overcomes all the
limitations due to historical records length, and the restric-
tive linearity assumptions required by the Unit Hydrograph
approach as well as the ones required by the Mancini et
al. (2002) approach, by generating a long series of synthetic
precipitation, which is then coupled to a continuous time
Explicit Soil Moisture Accounting (ESMA) rainfall-runoff
model. The use of continuous simulation, which necessar-
ily implies continuous hydrological models of the ESMA
type, was also advocated by Bras et al. (1985); Beven (1987);
Cameron et al. (1999), and seems the most appropriate way
for determining the statistical dependence of the rainfall-
runoff relation to the initial soil moisture conditions. The sta-
tistical analysis of the long series of synthetic results allows
in development of joint and conditional probability func-
tions, which are then used within a Bayesian context to de-
termine the appropriate rainfall thresholds.

As presently implemented, the approach does not take into
account the uncertainty in the quantitative precipitation fore-
casts (QPF) provided by the numerical weather prediction
(NWP) models. However, since the uncertainty of QPF is
still quite substantial, an extension of the present approach is
under development to incorporate this uncertainty by means
of a Bayesian technique. Nonetheless, this first step was felt
essential to demonstrate the feasibility of the proposed tech-
nique with respect to the simple unconditional rainfall thresh-
olds, i.e. independent from the initial soil moisture condi-

tions, which today are the basis for issuing warnings in many
countries.

2 Description of the proposed methodology

In order to simplify the description of the methodology, two
phases are here distinguished: (1) the rainfall thresholds es-
timation phase and (2) the operational utilization phase. The
first phase includes all the procedures aimed at estimating
the rainfall thresholds related to the risk of exceeding a criti-
cal water stage (or discharge) value at a river section. These
procedures are executed just once for each river section of
interest as well as for each forecasting horizon. The second
phase includes all the operations to be carried out each time a
significant storm is foreseen, in order to compare the precip-
itation volume forecast by a meteorological model with the
critical threshold value already determined in phase 1.

2.1 The rainfall thresholds estimation

As presented in Sect. 1.2, rainfall thresholds are here defined
as the cumulated volume of rainfall during a storm event
which can generate a critical water stage (or discharge) at
a specific river section. When the rainfall threshold value
is exceeded, the likelihood that the critical river level (or
discharge) will be reached is high and consequently it be-
comes appropriate to issue a flood alert; alternatively, no
flood alert is going to be issued when the threshold level is
not reached. In other words the rainfall thresholds must in-
corporate a “convenient” dependence between the cumulated
rainfall volume during the storm duration and the possible
consequences on the water level or discharge in a river sec-
tion. The term “convenient” is here used according to the
meaning of the decision theory under uncertainty conditions,
namely the decision which corresponds to the minimum (or
the maximum) expected value of a Bayesian cost utility func-
tion.

Given the different initial soil moisture conditions, which
can heavily modify the runoff generation in a catchment, it
is necessary to clarify that it is not possible to determine a
unique rainfall threshold for a given river section. It is well
known that the water content in the soil strongly affects the
basin hydrologic response to a given storm, with the con-
sequence that a storm event considered irrelevant in a dry
season, can be extremely dangerous in a wet season when
the extent of saturated areas may be large. This implies the
necessity of determining several rainfall thresholds for dif-
ferent soil moisture conditions. Although one could define a
large number of them, for the sake of simplicity and appli-
cability of the method, similar to what is done in the Curve
Number approach (Hawkins, 1985), only three classes of soil
moisture condition have been considered in this work: dry
soil, moderately saturated soil, wet soil. A useful indica-
tor for discriminating among soil moisture classes, the An-
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Fig. 2. Schematic representation of the proposed methodology. (1) Subdivision of the three synthetic time series according to the soil
moisture conditions (AMC); (2) Estimation of the joint pdfs between rainfall volume and water stage or discharge; (3) Estimation of the
“convenient” rainfall threshold based on the minimisation of the expected value of the associated utility function.

tecedent Moisture Condition (AMC) can be found in the lit-
erature (Gray, 1982; Hawkins, 1985), which leads to the fol-
lowing three classes of soil moisture AMC I (dry soil), AMC
II (moderately saturated soil ) and AMC III (wet soil). Since
each AMC class will condition the magnitude of the rainfall
threshold, three threshold values have to be determined.

Given the loose link that can be found between rainfall
totals and the corresponding water stages (or discharges) at
a given river section, the estimation of the rainfall thresh-
olds requires the derivation of the joint probability function
of rainfall totals over the contributing area and water stages
(or discharges) at the relevant river section. This derivation is
based on the analysis of three continuous time series: (i) the
precipitation averaged over the catchment area, (ii) the mean
soil moisture value, (iii) the river stage (or the discharge) in
the target river section. It is obvious that these time series
must be sufficiently long (possibly more than 10 years) to ob-
tain statistically meaningful results. In the more usual case
when the historical time series are not long enough, the av-
erage rainfall over the catchment is simulated by a stochastic
rainfall generation model whose parameters are estimated on
the basis of the observed historical time series. The rainfall
stochastic model adopted in this work is the Neyman-Scott
Rectangular Pulse NSRP model, widely documented in the

literature (Rodriguez-Iturbe et al., 1987a; Cowpertwait et al.,
1996). With the above mentioned model, 10 000 years of
hourly average rainfall over the catchment were generated
and used as the forcing of a hydrologic model. The model
used in this work is the lumped version of TOPKAPI (Todini
and Ciarapica, 2002; Ciarapica and Todini, 2002; Liu and
Todini, 2002). described in Appendix A with which the cor-
responding 10 000 years of hourly discharges and soil mois-
ture conditions have been generated.

At this point it is worthwhile noting that:

– The choice of the stochastic rainfall generation model
and the rainfall-runoff model is absolutely arbitrary and
does not affect the generality of the proposed method-
ology.

– Only the average areal rainfall on the basin is used in
the proposed approach thus neglecting the influence of
its spatial distribution. Therefore, the suitable range
for applying the proposed methodology is limited to
small and medium size basins (roughly up to 1000–
2000 km2), where the extension of the forecasting lead
time by means of QPF may be of great interest for oper-
ational purposes, also taking into account that the QPF
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Fig. 3. The synthetic time series and the three time values used in
the analysis:t0 is the time of the storm arrival,T is the time interval
for the rainfall accumulation,TC is the time of concentration for the
catchment.

is generated by the meteorological models with a rather
coarse resolution (generally larger than 7×7 km2).

– The results obtained via simulation are not the threshold
values, but less stringent relations such as: (1) indicators
incorporating the information on the mean soil moisture
content, which are used to discriminate the appropriate
AMC class and (2) the joint probability density func-
tions between total rainfall over the catchment and the
water stage (or discharge) at the river section of interest.

Phase 1 of the proposed methodology for deriving the rain-
fall thresholds follows the three steps illustrated in Fig. 2:

Step 1. Subdivision of the three time series obtained via
simulation (generated average rainfall, simulated average
soil moisture content, simulated water stage or discharge at
the outlet) according to the defined soil moisture conditions
(AMC) (Sect. 2.2);

Step 2. Estimation, for each of the identified AMC classes,
of the joint probability density function of the rainfall cumu-
lated over the forecasting horizon(s) of interest and the max-
imum discharge in a related time interval (Sect. 2.3);

Step 3. Estimation of a rainfall alarm threshold, for each
of the identified AMC classes (Sect. 2.4).

2.2 Step 1: Sorting the time series according to the AMC
classes

In order to account for the different soil moisture initial con-
ditions, it is necessary to divide the three synthetic records,
namely the stochastically generated rainfall, the soil moisture
conditions and the water levels (or discharges) obtained via
simulation, in three subsets, each corresponding to a different
AMC class.

This subdivision is performed on the basis of the AMC
value relevant to the soil moisture condition preceding a

Fig. 4. A typical joint probability density function for rainfall
volume and discharge with different (exponential and log-normal)
marginal densities for a given soil moisture AMC class.

storm event. According to this value, the corresponding rain-
fall and discharge time series will be grouped in the appro-
priate AMC classes. This operation needs some further clar-
ification, since the search for the rainfall totals and the cor-
responding discharge (or water stage) must each be done in
different time intervals in order to account for the catchment
concentration time.

With reference to Fig. 3, three time values are defined:

t0 the storm starting time
T the rainfall accumulation time
TC the catchment concentration time
TC can be estimated from empirical relationships

based on the basin geomorphology or from time
series analysis, when long records are available.
As it emerged from the sensitivity analysis of the
proposed methodology, in reality there is no need
of great accuracy in the determination ofTC .

On the basis of the above defined time values, the rainfall
volumeVT (or rainfall depth) accumulated fromt0 to t0+T

and the maximum discharge valueQ (or the maximum water
stage) occurring in the time interval fromt0 to t0+T +TC are
retained and grouped in one of the classes according to the
AMC value att0.

For a better description of the probability densities, al-
though not essential, it was decided to construct the AMC
classes so that they would each incorporate approximately
the same number of joint observations. Therefore, the soil
moisture contents corresponding to the 0.33 and 0.66 per-
centiles can be used to discriminate among the three classes.
Accordingly, based on the initial soil moisture condition at
t0, the different events are classified as AMC I (dry soil),
AMC II (moderately saturated soil ) and AMC III (wet soil).
It is evident that this convenient class labelling has a differ-
ent meaning from the SCS method with which should not be
confused.
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Fig. 5. Cost utility functions used to express the stakeholder per-
ceptions.

Fig. 6. Expected value of the cost utility as a function of different
rainfall threshold values. This analysis is repeated for each time
rainfall accumulation time T and for each Antecedent Soil Moisture
conditions class. For instance this graph is referred to AMC II and
T=12 h.

2.3 Step 2: Fitting the joint probability density function

Once the corresponding pairs of values (the rainfall total and
the relevant maximum water stage or discharge) have been
sorted into the three AMC classes, for each class one can use
these values to determine the joint probability density func-
tions (jpdf) between the rainfall total and the relevant maxi-
mum discharge (or the water stage), to be used in step three.
A jpdf will be estimated for each different forecasting hori-
zon T , which will coincide with the rainfall accumulation
time.

The problem of fitting a bi-variate densityf (q, v |T )

in which marginal densities are vastly different (quasi log-
normal for that of discharges and quasi exponential in terms

Fig. 7. Example of the rainfall thresholds derived for each AMC
class as a function of rainfall accumulation time: when the soil is
wet the threshold will obviously be lower.

Fig. 8. Box plot of the mean monthly soil moisture condition cal-
culated using the TOPKAPI model for the Sieve catchment.

of rainfall totals) can be overcome either by using a “cop-
ula” (Nelsen, 1999) or more interesting a Normal Quantile
Transform (NQT) (Van der Waerten, 1952, 1953; Kelly and
Krzysztofowicz, 1997). Figure 4 shows an example of the
shape of one of the resulting bi-variate densities.

2.4 Step 3: Estimation of the most convenient rainfall
threshold

The concept of flood warning thresholds takes its origins
from the flood emergency management of large rivers, where
the travel time is longer than the time required to implement
the planned protection measures. In this case, the measure-
ment of water stages at an upstream cross section can give
accurate indications of what will happen at a downstream
section in the following hours. Therefore, critical threshold
levels were established in the past on the basis of water stage
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Fig. 9. The AMC calendar for the antecedent soil moisture condition estimation.

measurements rather than on their forecasts. Unfortunately,
when dealing with smaller catchments, the flood forecasting
horizon is mostly limited by the concentration time of the
basin, which means that one has to forecast the discharges
and the river stages as a function of the measured or fore-
casted precipitation. In this case, uncertainty affects the fore-
casts and the problem of issuing an alert requires determin-
ing the expected value of some utility or loss function. In
the present work, following Bayesian decision theory (Ben-
jamin and Cornell, 1970; Berger, 1986), the concept of “con-
venience” is introduced as the minimum expected cost under
uncertainty. The term “cost” does not refer to “actual costs”
of flood damages that are probably impossible to be deter-
mined, but rather a Bayesian utility function describing the
damage perception of the stakeholder, which may even in-
clude the non commensurable damages due to “missed alert”.

Without loss of generality, in the present work the follow-
ing cost function, graphically shown in Fig. 5, is expressed
in terms of discharge:

U (q, v|VT , T ) =

{
a

1+be−c(q−Q∗)
whenv ≤ VT and no alert is issued

C0 +
a′

1+b′e−c′(q−Q∗)
whenv > VT and an alert is issued

(1)

with T the time of rainfall depth accumulation,v the fore-

casted volume andVT the rainfall threshold value, while
a, b, c anda′, b′, c′ are appropriate parameters. Due to the
fact that the utility functions are only functional to the final
objective of providing the decision makers with tools reflect-
ing their risk perception, the shape of such functions, as well
as the relevant parameter values, can be jointly assessed, by
analysing the relevant effects on the decision process over
past events.

U (q, v |VT , T ) is the utility cost function, which ifv≤VT

expresses the perception of damages when no alert is issued
(the dashed line in Fig. 5): no costs will occur if the discharge
q will remain smaller than a critical valueQ∗, while damage
costs will grow noticeably if the critical value is overtopped.
On the contrary, ifv¿VT it expresses the perception of dam-
ages when the alert is issued (the solid line in Fig. 5) a cost
which will be inevitably paid to issue the alert (evacuation
costs, operational cost including personnel, machinery etc.),
and damage costs growing less significantly when the criti-
cal valueQ∗ is overtopped and the flood occurs. As can be
seen from Fig. 5, the utility function to be used will differ de-
pending on the value of the cumulated rainfall forecastv and
the rainfall thresholdVT . If the forecast precipitation value
is smaller or equal to the threshold value, the alert will not be
issued; on the contrary, if the forecasted precipitation value
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Table 1. AMC classes definition according to the SCS approach

5-day antecedent rainfall totals [mm]

AMC class Dormant season Growing season

AMC I (dry) P<12.7 P<35.6
AMC II (medium) 12.7<P<27.9 35.6<P<53.3
AMC III (wet) P>27.9 P>53.3

is greater than the threshold value, an alarm will be issued.
The most “convenient” rainfall threshold valueV ∗

T can
thus be determined by search as the one that minimises the
expected utility cost, namely:

V ∗

T = Min
VT

〈E {U (q, v |VT , T )}〉

= Min
VT

〈∫
+∞

0

∫
+∞

0
U (q, v |VT , T ) f (q, v |T ) dq dv

〉
(2)

wheref (q, v |T )is the joint probability distribution func-
tion of the rainfall volume and the discharge peak value de-
scribed in Sect. 2.3. One rainfall threshold valueV ∗

T will
be derived for each accumulation timeT . In Figure 6 one
can see the typical shape of the expected value of the utility
E {U (q, v |VT , T )} for a given accumulation timeT .

Finally, Fig. 7 shows that all the values of the rainfall
thresholds obtained for each AMC class, can be plotted as a
function of the rainfall accumulation time. In the same Fig. 7,
one can also appreciate the simplicity of the procedure used
to decide whether or not to issue an alert. It is sufficient to
progressively accumulate the forecast rainfall totals, starting
from the measured rainfall volume and to compare the value
to the appropriate AMC threshold value.

3 Operational use of the rainfall threshold approach

In order to operationally use the rainfall thresholds approach,
whenever a storm event is forecast, one has to identify the
AMC class to be used and the relevant rainfall threshold.
This can be done without running a hydrological model in
real time. For instance, in the cited work by Mancini et
al. (2002), the AMC is estimated according to the Soil Con-
servation Service definitions (SCS, 1986) reported in Table 1.
However, the approach, although very simple, can lead to
an incorrect estimation of the antecedent soil moisture, since
it neglects the intra-annual long term dependency (season-
ality) of the soil moisture conditions. As a matter of fact
(see Table 1) the SCS AMC only incorporates the informa-
tion relevant to the precipitation of the previous 5 days, while
from the example of Fig. 8, where the box plot of the mean
monthly soil moisture condition is displayed, one can notice
that the intra-annual variability of the soil moisture can be
very high and the short-term influence of the precipitation

Table 2. Two-by-two contingency table for the assessment of a
threshold based forecasting system

Forecasts

Observations Warning No Warning Total
W W ′

Event,E h m e

Non Event,E′ f c e′

Total w w′ n

alone is not sufficiently informative to correctly estimate the
antecedent soil moisture conditions.

Therefore, an alternative methodology, which makes use
of the long synthetic time series, already obtained for the
thresholds derivation, is here proposed, to be applied only
once in phase 1. As one can see from Fig. 9, it is possible to
determine on a monthly basis, the simulated mean soil mois-
ture as a function of the cumulated rainfall volume over the
previousn days. More in detail, Fig. 9 shows for the Sieve
catchment, on which the methodology was tested, the mean
soil moisture of the month vs the precipitation volume cumu-
lated over the previous 72 h. These results were obtained by
using the 10 000 years synthetic rainfall and the correspond-
ing simulated soil moisture series. The graphs in Fig. 9 will
be referred to as the “AMC Calendar”. There is an evident
dependency of the soil saturation condition on the antecedent
precipitation and it is quite easy to estimate the appropriate
AMC class by means of the AMC Calendar by comparing
the cumulated rainfall value with the 0.33 and 0.66 quantiles
determined as described in Sect. 2.2 (Fig. 10).

When a storm is forecast, using the rainfall thresholds to-
gether with the AMC Calendar, it is possible to:

Determine the mean catchment soil moisture and the cor-
rect AMC class, by entering into to the monthly graph with
the cumulated rainfall volume recorded in the previousn h;

Choose the rainfall threshold corresponding to the identi-
fied AMC class;

Add the forecast accumulated rainfall to the observed rain-
fall volume;

Issue a flood alert if the identified threshold is overtopped.

4 A framework for testing the procedure

Following the meteorological literature, a framework based
on contingency tables was used to assess the performance of
the proposed approach. Contingency tables are highly flexi-
ble methods that can be used to estimate the quality of a de-
terministic forecast system (Mason and Graham, 1999) and,
in their simplest form, indicate its ability to anticipate cor-
rectly the occurrence or non occurrence of predefined events.
A warning W is defined as the forecast of the occurrence
of an eventE (in this case the overtopping of a threshold).
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Fig. 10. The use of the monthly AMC Calendar to determine the
appropriate AMC class.

A two-by-two contingency table can be constructed as illus-
trated in Table 2. From a total number ofn observations, one
can distinguish the total number of event occurrences (e) and
that of non-occurrences (e′); the total number of warnings is
denoted asw, and that of no-warnings asw′. The following
outcomes are possible: a hit, if an event occurred and a warn-
ing was issued (withh the total number of hits); a false alarm,
if an event did not occur but a warning was issued (withf the
total number of false alarms); a miss, if an event occurred but
warning was not issued (withm the total number of misses);
a correct rejection, if an event did not occur and a warning
was not issued (withc the total number if correct rejections).

The skill of a forecasting system can be represented on
the basis of the hit rate and the false-alarm rate. Both ratios
can be easily evaluated from the contingency table (Mason,
1982):{

hit rate =
h

h+m
=

h
e

false-alarm rate= f
f +c

=
f
e′

(3)

The hit and false-alarm rates (Eq. 3), indicate respectively the
proportion of events for which a warning was provided cor-
rectly, and the proportion of non events for which a warning
was provided incorrectly. The hit rate is sometimes known
as the probability of detection and provides an estimate of
the probability that an event will be forewarned, while the
false-alarm rate provides an estimate of the probability that a
warning will be incorrectly issued (Eq. 4).{

hit rate = p (W |E )

false-alarm rate= p
(
W
∣∣E′

) (4)

For a system that has no skill, warnings and events are by
definition independent occurrences, therefore, the probabil-

Fig. 11.The River Sieve catchment and the location of the different
gauges.

ity of issuing an alert does not depend upon the occurrence
or non occurrence of the event, namely:

p (W |E ) = p
(
W
∣∣E′

)
= p (W) (5)

This equality occurs when warnings are issued at random.
When the forecast system has some skill, the hit rate exceeds
the false-alarm rate; a bad performance is indicated by false-
alarm rate exceeding the hit rate. Because of the equality of
the hit and false-alarm rates for all forecasts strategies with
no skill, the difference between the two rate indexes can be
considered an equitable skill scoress(Gandin and Murphy,
1992).

ss = p (W |E ) − p
(
W
∣∣E′

)
(6)

5 The case study

The proposed methodology was applied to the case study of
the River Sieve. The River Sieve is a predominantly moun-
tain river, which flows into the River Arno just upstream of
the city of Florence in Italy (Fig. 11). The catchment area
is approximately 700 km2 at the river cross section at For-
nacina with an elevation ranging form 300 m to 1300 m. The
climate is temperate and generally wet with extreme rainfall
events in fall and spring which may cause flash floods. On 4
November 1966, one of the major floods of the Sieve, which
highly contributed to the Florence flooding, was recorded,
with more than 800 m3s−1. For this study, rainfall and tem-
perature hourly observations were available for 7 years at 12
measurement stations (11 raingauges 1 river stage + rating
curve) located within the basin. A comprehensive database
for soil textures, soil types and land use at the local scale
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Fig. 12. The three rainfall thresholds derived for the Sieve at For-
nacina.

Fig. 13. Hit Rate and False-Alarm Rate as a function of flood fore-
casting horizon for the case of the River Sieve at Fornacina.

obtained from surveys carried out in the last 10 years was
also available. The conversion from water levels to river dis-
charges at the Fornacina cross section is obtained by means
of a rating curve, derived on the basis of flow velocity mea-
sures and field surveys of the river cross section geometry,
and provided by the Tuscany Regional Hydrological Service.

According to the proposed methodology, a series of 10 000
years of hourly rainfall was generated by means of the
Neyman-Scott Rectangular Pulse NSRP model (Rodriguez-
Iturbe et al., 1987a; Cowpertwait et al., 1996). The generated
rainfall was then used as input to the lumped TOPKAPI, a
hydrological model described in Appendix A. The rainfall as
well as the resulting discharges series were divided in three
subsets (AMC1, AMC2, AMC3) according to the time se-
ries of Antecedent Moisture Condition, also resulting from
the hydrological simulation. “Convenient” rainfall threshold

Fig. 14. Skill score as a function of flood forecasting horizon for
the case of the River Sieve at Fornacina.

values were then found by means of Eq. 2 for an increasing
time horizonT ranging from 0 to 72 h. Figure 12 shows the
results obtained for the Sieve catchment at Fornacina.

The verification of the forecasting capabilities of the pro-
posed methodology applied to the Sieve at Fornacina, based
upon the validation framework described in Sect. 4, was per-
formed by generating a 1000 year long time series of syn-
thetic rainfall, different from the 10 000 year one used for
setting up the methodological approach. The cases of Cor-
rectly Issued Alarms (h), Missed Alarms (m), False Alarms
(f ), Correctly Rejected Alarms (c) were computed for dif-
ferent lead time horizonsT . Based on the results, thehit
rate and thefalse-alarm rate(Fig. 13) as well as the Skill
Score (ss) (Fig. 14), were computed following their defini-
tions given in Eq. 3 and Eq. 6 respectively as a function of
accumulation timeT .

From Fig. 13, it is interesting to notice that the false alarm
rate stays to zero up to an horizon of 6 h in advance while
the hit rate remains almost 1 up to 9 h in advance, at which
time the false alarm rate is approximately 0.1. The quality
of the results is also confirmed in Fig. 14, which shows that
the skill score remains close to 1 up to 6 h in advance, while
dropping to 0.9 up to 9 h in advance. There are two important
issues to discuss in these graphs (Figs. 13 and 14). The first is
the high performance obtained for the first 6 to 8 h. This can
be explained by the high correlation existing in this relative
small catchment between the rainfall volume and the peak of
the discharge within a short time interval which somehow is
justified by the Dunne hypothesis. The typical duration for
rainfall events of high intensity for this area varies between
5 and 12 h; this causes the contemporary overtopping of the
rainfall and flood threshold. The second issue is the quick
drop of the skill after 9 h. After this time window, neglect-
ing the time distribution of the rainfall intensity makes the
previous correlation to decay rapidly. As a matter of fact the
approach does not distinguish between short duration high
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Fig. 15. The resulting two graphs on which the whole operational procedure of the proposed approach is based upon.

intensity events and long duration low intensity ones.
Moreover, it must be borne in mind that these results do

not incorporate the “rainfall forecasting uncertainty”. They
were only derived, on the assumption of “perfect knowledge”
of future rainfall, in order to validate the approach. In other
words, the actually observed rainfall is here used as the “fore-
casted rainfall”. In operational conditions, future rainfall is
not known and only quantitative precipitation forecasts orig-
inated either by nowcasting techniques or by Limited Area
Atmospheric models may be available.

The introduction of a probabilistic rainfall forecast will
inevitably imply the derivation of an additional probability
densityf

(
v
∣∣v̂ ), expressing the probability of observing a

given rainfall volumev conditional upon a forecasted vol-
umev̂, but it is envisaged that it will not completely modify
the proposed procedure. Research work is currently under
way to provide user oriented operational solutions and will
be reported in a successive paper.

Nonetheless, it is worthwhile noting that the proposed
methodology is very appealing for operational people. In
fact, not only does it not require a flood forecasting model
running in real time, but even a computer is not necessary in
operational conditions: only the two graphs given in Fig. 15
are used in practice to evaluate the possibility of flooding.
Therefore, the advantage of this method stems from its sim-
plicity, thus providing a quick reference method to the stake-
holders and the flood emergency managers interested at as-
sessing, within a given lead time horizon, the possibility of
flooding whenever a QPF is available.

6 Conclusions

This paper presented an original methodology aimed at is-
suing flood warnings on the basis of rainfall thresholds. The
rainfall threshold values relevant to a given river cross section
take into account the upstream catchment initial soil moisture
conditions as well as the stakeholders’ subjective perception

on the convenience of issuing an alert, through the minimiza-
tion of expected costs, within the framework of a Bayesian
approach. The advantage of the proposed methodology lies
in its extremely simple operational procedure, based solely
on two graphs, that makes it easy to be understood and ap-
plied by non technical users, such as most flood emergency
managers.

Nonetheless, not all the problems have been addressed for
a successful operational use of the methodology. The pro-
cedure presented in this paper, although it can be considered
as a great improvement from the presently used approaches,
must be viewed as a first step towards a sound operational
approach. The limitation of the present stage is due to the
implicit assumption of “perfect knowledge” of future rain-
fall, in the sense that QPF is taken as a known quantity in-
stead of an uncertain forecast. Although, this approach is
currently used by most flood alert operational services, the
role of the uncertainty in QPF has been presently brought to
the attention of the community by meteorologists, through
the use of ensemble forecasts and by meteorologists and hy-
drologists within the frame of the recently launched Interna-
tional Project HEPEX .

Ongoing research deals in fact with the problem of assess-
ing uncertainty within the framework of the rainfall threshold
approach.

The next step aims at incorporating the QPF uncertainty in
the derivation of the rainfall thresholds, by taking the joint
probability distribution function between rainfall and dis-
charge (or water stage) derived via simulation as a distribu-
tion conditional on the knowledge of future rainfall. Given
the probability density of future rainfall conditional on the
QPF, it will then be possible to combine them in order to ob-
tain the overall joint density from which one can integrate
out the effect of the QPF uncertainty.

After that, an attempt will be made to assess the influence
of the model (both rainfall simulator and hydrologic model)
uncertainties on the rainfall threshold estimation, although
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Fig. 16. The schematic representation of the lumped TOPKAPI hydrological model, according to Liu and Todini 2002l.

the effect of this uncertainty is much smaller on decisions
than the one produced by the large QPF uncertainty.

Appendix A The rainfall-runoff model used:
the lumped version of the TOPKAPI model

Two of the hydrologic time series used in the proposed
methodology (namely the soil moisture content and the dis-
charge at the river section of interest) were generated by
means of a lumped rainfall-runoff model (the lumped version
of TOPKAPI), which allows for a continuous simulation at
an hourly time step.

The TOPKAPI approach is a comprehensive distributed-
lumped approach widely documented in the literature (To-
dini and Ciarapica, 2002; Ciarapica and Todini, 2002; Liu
and Todini, 2002). It was also shown (Liu and Todini, 2002),
that the lumped TOPKAPI model schematized in Fig. 16,
can be directly derived, without the need for a new calibra-
tion, from the distributed physically meaningful version. In
the lumped version, a catchment is regarded as a dynamic
system composed of three reservoirs: the soil reservoir, the
surface reservoir and the channel reservoir. The precipita-
tion on the catchment is partitioned into direct runoff and

infiltration using a Beta-distribution curve, which reflects the
non-linear relationship between the soil water storage and the
saturated contributing area in the basin. The infiltration and
direct runoff are then routed through the soil reservoir and
surface reservoir, respectively. Outflows from the two reser-
voirs, namely interflow and overland flow, are then taken as
inputs to the channel reservoir to form the channel flow.

As previously mentioned, it can be proven that the lumped
version of the TOPKAPI model can be derived directly from
the results of the distributed version and does not require ad-
ditional calibration. In order to obtain the lumped version of
the TOPKAPI, the point kinematic wave equation is firstly
integrated over the single grid cell of the DEM (Digital Ele-
vation Model) and successively the resulting non-linear stor-
age equation is integrated over all the cells describing the
basin. In the case of the soil model the following relation is
obtained:

∂VST

∂t
= RA −

αs + 1

αsX2

1

N−1∑
1=1

(
N−1∏
m=`

f m

)
+ 1


αs

XC̄ST
V

as

ST
= RA − bsVST

(A1)
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with

1

C̄ST

=


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i=1


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1 +
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fm

)
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)
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αs

(A2)

whereiis the index of a generic cell;j is the of cells drained
by theith cell; N is the total number of cells in the upstream
contributing area,VsT is the water storage in the catchment,
Ris the infiltration rate;A is the catchment area;fm repre-
sents the fraction of the total outflow from themth cell which
flows towards the downstream cell, andαs is a soil model
parameter assumed constant in the catchment,bs is a lumped
soil reservoir parameter which incorporates in an aggregate
way the topography and physical properties of the soil.

Equation A1 corresponds to a non-linear reservoir model
and represents the lumped dynamics of the water stored in the
soil. The same type of equation can be written for overland
flow and for the drainage network, thus transforming the dis-
tributed TOPKAPI model into a lumped model characterized
by three “structurally similar” non-linear reservoirs, namely
“soil reservoir”, “surface reservoir” and “channel reservoir”.

Due to the spatial variability of the different cells in terms
of water storage and flow dynamics, the infiltration rate in
Eq. A1 must be preliminarily evaluated by separating precip-
itation into direct runoff and infiltration into the soil. In order
to obtain this separation, a relationship linking the extent of
saturated areas and the volume stored in the catchment has
to be introduced, similarly to what is done in the Xinanjiang
model (Zhao, 1977), in the Probability Distributed Soil Ca-
pacity model (Moore and Clarke, 1981) and in the ARNO
model (Todini, 1996).

Given the availability of a distributed TOPKAPI version,
this relationship can be obtained by means of simulation. At
each step in time the number of saturated cells is put in re-
lation to the total volume of water stored in the soil over the
entire catchment. Indicating withV sT the total water stor-
age in the soil, withV ss the soil water storage at saturation
and withAs the total saturated area, the relationship between
the extent of saturated areas and the volume stored in the
catchment can be approximated by a Beta-distribution func-
tion curve expressed by Eq. A3:

As

A
=

VST
VSS∫
0

0 (r + s)

0 (r) 0 (s)
ϕr−1 (1 − ϕ)s−1 dϕ (A3)

with 0 (x) the Gamma function defined as:

0 (x) =

+∞∫
0

ζ x−1e−ζ dζ , x>0 (A4)

As it was found in the analysis of the distributed TOPKAPI
results, an exfiltration phenomenon exists. For instance when
rainfall stops and the relevant overland flow has receded, sur-
face runoff can still be larger that the possible maximum in-
terflow due to a return flow caused by exfiltration. This return
flow is estimated using a limiting parabolic curve (Fig. 16)
representing the relationship between the return flow and the
fraction of saturation in the catchment, which parameters are
estimated on the basis of the distributed TOPKAPI model
simulation results. This parabolic curve can be expressed as
equation:

Qreturn = α1

(
V̄ sT

V ss

)2

+ a2

¯V sT

V ss
+ α3 (A5)

whereQreturn is the calculated return flow discharge during
a time intervalt2−t1, V̄ sT =0.5CV sT1+V sT2 is the averaged
soil water storage,a1, a2 anda3 are the parameters. Accord-
ingly, the infiltration rate into the soil within the time interval
1t can be computed by using equation:

R =
1

A

(
VSt2

− VSt1

t2 − t1
− Qret

)
(A6)

The quantitiesR andRd are then input into the soil reservoir
and the surface reservoir, respectively. The interflow and the
overland flow can be obtained by means of water balance
method, and are then together drained into the channel reser-
voir to generate the total outflow at the basin outlet (Fig. 16).

For a more detailed description of the model refer to Liu
and Todini, 2002.
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