Articles | Volume 10, issue 2
Hydrol. Earth Syst. Sci., 10, 263–276, 2006
https://doi.org/10.5194/hess-10-263-2006
Hydrol. Earth Syst. Sci., 10, 263–276, 2006
https://doi.org/10.5194/hess-10-263-2006

  26 Apr 2006

26 Apr 2006

Distributed hydrological modeling of total dissolved phosphorus transport in an agricultural landscape, part II: dissolved phosphorus transport

W. D. Hively1, P. Gérard-Marchant2, and T. S. Steenhuis2 W. D. Hively et al.
  • 1Department of Natural Resources, Cornell University, Ithaca, NY 14853, USA
  • 2Soil & Water Group, Department of Biological and Environmental Engineering, Riley Robb Hall Cornell University, Ithaca, NY 14853, USA

Abstract. Reducing non-point source phosphorus (P) loss to drinking water reservoirs is a main concern for New York City watershed planners, and modeling of P transport can assist in the evaluation of agricultural effects on nutrient dynamics. A spatially distributed model of total dissolved phosphorus (TDP) loading was developed using raster maps covering a 164-ha dairy farm watershed. Transport of TDP was calculated separately for baseflow and for surface runoff from manure-covered and non-manure-covered areas. Soil test P, simulated rainfall application, and land use were used to predict concentrations of TDP in overland flow from non-manure covered areas. Concentrations in runoff for manure-covered areas were computed from predicted cumulative flow and elapsed time since manure application, using field-specific manure spreading data. Baseflow TDP was calibrated from observed concentrations using a temperature-dependent coefficient. An additional component estimated loading associated with manure deposition on impervious areas, such as barnyards and roadways. Daily baseflow and runoff volumes were predicted for each 10-m cell using the Soil Moisture Distribution and Routing Model (SMDR). For each cell, daily TDP loads were calculated as the product of predicted runoff and estimated TDP concentrations. Predicted loads agreed well with loads observed at the watershed outlet when hydrology was modeled accurately (R2 79% winter, 87% summer). Lack of fit in early spring was attributed to difficulty in predicting snowmelt. Overall, runoff from non-manured areas appeared to be the dominant TDP loading source factor.