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Abstract. This paper presents some analytical results andhe FPD shape, to compare the FPD of various watersheds or
numerical illustrations on the asymptotic properties of flood to anticipate the effect of changes, for instance land use or
peak distributions obtained through derived flood frequencyclimatic evolutions on FPD. Secondly, it appeared intellectu-
approaches. It confirms and extends the results of previally more satisfactory, for statistical interpolation and extrap-
ous works: i.e. the shape of the flood peak distributionsolation purposes, to derive the shape of flood peak distribu-
are asymptotically controlled by the rainfall statistical prop- tions from the selection of a rainfall statistical model and of
erties, given limited and reasonable assumptions concerma rainfall-runoff model adapted to the considered case study,
ing the rainfall-runoff process. This result is partial so far: rather than to directly select a theoretical distribution chosen
the impact of the rainfall spatial heterogeneity has not beeron the basis of the extreme value theory or for mathematical
studied for instance. From a practical point of view, it convenience.

provides a general framework for analysis of the outcomes As statistical extrapolation tools, DFFD, if properly used,
of previous works based on derived flood frequency ap-probably have performances comparable to the conventional
proaches and leads to some proposals for the estimation gfrocedure based on theoretical distribution fitting. But there
very large return-period flood quantiles. This paper, focusseds, for the moment, no reason to think that they perform
on asymptotic distribution properties, does not propose anyetter. The unavoidable simplifications of the runoff gen-
new approach for the extrapolation of flood frequency distri- erating processes and of the rainfall statistical structure in
bution to estimate intermediate return period flood quantilesthe DFFD tools, the limited extrapolation capacities of the
Nevertheless, the large distance between frequent flood peadvailable simplified rainfall-runoff models reduce their po-
values and the asymptotic values as well as the simulationgential advantage over conventional statistical extrapolation
conducted in this paper help quantifying the ill condition of methods as illustrated by some worlRafnes and Valdes
the problem of flood frequency distribution extrapolation: it 1993 Moughamian et a).1987). This probably explains
illustrates how large the range of possibilities for the shapesvhy despite the numerous works conducted on DFFD since
of flood peak distributions is. the first paper of Eaglesobé Michele and Salvadqr2002
Loukas 2002 Arnaud and Lavabre2002 Blazkova and
Beven 2002 Goel et al, 200Q Cameron et a).2000 laco-
bellis and Fiorentinp200Q Gupta et al. 1996 Raines and
Valdes 1993 Smith, 1992 Sivapalan et a|1990, such pro-
cedures are, to our knowledge, seldom used in an operational
context Lamb and Kay 2004 Blazkova and Bever2004

1 Introduction

Eagleson(1972 was the first to combine a rainfall stochas-
tic model and a rainfall runoff model to generate synthetic
“derived flood frequency distributions” (DFFD). The objec- Aaud and Lavabre2000. _ _

tive of this approach was twofold. Firstly, it aimed at un-  Nevertheless, DFFD are also interesting tools to study the
derstanding the relationship between the flood peak distribufunctional relationship between the FPD shape and the cli-

tions (FPD) and the climatic and hydrologic characteristicsMatic and hydrologic characteristics of the corresponding
of a watershed: to identify the main control parameters ofwatershed. But what general conclusions about the shape of
the FPD can be drawn on the basis of DFFD approaches?

Correspondence tdE. Gaume This question is still wide open. A large variety of rain-
(gaume@cereve.enpc.fr) fall stochastic models and rainfall-runoff models have been
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234 E. Gaume: On the asymptotic behavior of flood peak distributions

tested in the previous works on DFFD. Some of these workdntensity event over a given duration). This is the representa-

are purely numerical approaches based on Monte-Carlo simtion selected in many papers dealing with DFFD, including

ulations (oukas 2002 Arnaud and Lavabr002 Hashemi  the paper of Eagleson (1972).

et al, 2000. With an ad hoc choice of rainfall and rainfall- In this very simple case, any rainfall-runoff model can be

runoff models it is sometimes possible to derive an approxi-summarized in the following form, as far as the peak dis-

mate Diaz-Granados et al1984 Eaglesonl1972 or acom-  charge is concerned:

pletely analytical form of the resulting FPID¢ Michele and

Salvadorj 2002 Goel et al, 2000. The impact of the pa- Y =CX @)

rameters of the rainfall and the rainfall-runoff models UsedThe peak discharg§ is a given proportion of the rainfall

on the FPD shape are generally analyzed but it is not possimtensity X. If the baseflow is neglected, this proportién

ble through these various works to evaluate the influence o kind of runoff rate, is included in the intervd, 1] and

the models themselves. may depend on the duration of the rainfall event, the rainfall-
The shape of a FPD, as will be shown hereafter, highlyrunoff dynamics and the state of the watershed (antecedent

depends of course on the dynamics of the rainfall-runoff pro-seil moisture for instance). Note that the condition imposed

cesses and the range of possibilities is quite large. But, genon ¢ implies reasonable conditions concerning the rainfall-

eral conclusions can be drawn concerning the asymptotic berunoff process: the peak discharge can not be a negative

havior of the FPD (i.e. the shape of the FPD as the returnjalue and can not exceed the intensity of the rainfall event.

period or the peak discharge tends to infinity) for a large va-if p(x) is the probability density function of the rainfall in-

riety of rainfall-runoff dynamics and DFFD tools. tensity X, then the survival function of has the following
This paper explores the link between the rainfall inten- form:

sity statistical characteristics and the asymptotic behavior of 1 roo

FPDs. The results presented are a generalization of resultg(y > y) = F(y) = / / p(c|x)p(x)dxde )

already obtained on specific DFFD tool3g Michele and 0 Jy/e

Salvadorj 2002 Eagleson1973. Limited and reasonable \yhere p(c|x) is the conditional density of given X. The

assumptions are made concerning the rainfall-runoff processyyryival function of Y depends of course on the function

The demonstration is first conducted with a simple rainfall |y (i.e. on the rainfall-runoff dynamics), but its asymp-

stochastic model used in many previous DFFD works: theygte wheny tends to infinity is controlled by the distribution

rainfall events are supposed to be rectangular pulses with g x as will be shown hereafter.

given duration and a constant intensity. Two asymptotic rain-

fall intensity distribution types are considered: extreme value2.2 The solution whe( is independent ok

distribution of type | (EV 1) also called exponential type and

EV Il (hyper-exponential type). When C is independent o, then it is straightforward to
The results are then generalized to any rainfall tempo-demonstrate that the asymptotic distributions{cdndY be-

ral structure. Numerical results obtained with a DFFD tool long to the same extreme value (EV) type and have the same
combining a 5-min point rainfall stochastic modMduhous ~ shape parameter. & is not equal to zero and if the distri-
et al, 2001 and a rainfall-runoff model presented in Ap- bution of X has no upper bound, than the distributionyof
pendix Al are shown as an illustration. has no upper bound either: its asymptote is necessarily of the
The last part of the paper is devoted to the discussion. Th&V | (exponential) or EV Il (hyper-exponential or algebric)
“Gradex” statistical extrapolation method based on assumptype. Moreover recalling that the moments of the product of
tions concerning the asymptotic behavior of flood peak dis-two independent random variables is equal to the product of
tributions as well as the limits of the common practice con-their moments, ifX has an exponential asymptotic distribu-
sisting of fitting theoretical statistical distributions to short tion (i.e. all the moments ok are finite), than all the mo-
series of peak discharges are questioned in ||ght of the rements ofY will also exist (le the asymptotic distribution of

sults presented herein. Y is of the exponential type). Conversely, if the asymptotic
This work remains partial so far: the influence of the spa-distribution of X is of the EV Il type, the moments of of
tial heterogeneity of rainfall is for instance not studied. orders greater tham (shape parameter of the asymptotic dis-

tribution) will be infinite. The moments of order greater than
« of the random variabl& will also be infinite. The asymp-
2 Basic concept totic distribution ofY is therefore also of the EV Il type and
has furthemore the same shape parametas the asymp-
2.1 The key idea: the simplification of the rainfall-runoff totic distribution ofX. The same results can be obtained de-
process in a DFFD framework riving the asymptotic properties of the functié(Y >y) see
Appendix B1 and Appendix D1. It is furthermore demon-
Let us begin with a very simple representation of a rainfall strated in Appendix B1 that if the density function Gfis
event before generalizing: a rectangular pulse (i.e. a constantot equal to zero for=1, than the asymptotic distributions
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Fig. 1. Distributions ofY=CX obtained with various values of the varianceaf The mean ofC is equal to (6. The black diamonds
correspond to a uniform distribution fér over[0, 1].
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Fig. 2. Distributions ofY=C X obtained with various values of the meancaf The variance of” is equal to ¥12. The black diamonds
correspond to a uniform distribution fér over[0, 1].

of X andY have the same scale parameter in the EV | case3 Generalization of the previous results

both survival functions will be parallel to one another on a

semi-logarithmic (Gumbel) plot. _ 3.1 Rainfall events still have a constant intensity but the
Figuresl and2 show the distributions of =C X obtained density function o may depend oX

through Monte Carlo simulations witki exponentially dis-

tributed (mean equal to 1) ar@ being a Beta random vari- h istical ind q b q hat is th
able taking values in the intervgd, 1]. Different values for e statistical independence betwe€rand X, that Is the

the mean and the variance of this Beta variable have bee'ﬁ]dependence between the rainfall intensity and the “runoff
tested. In each case, the slope of the distributio afp- rate” is an unrealistic assumption if the model is supposed

pears to converge, even though very slowly, towards 1: thd® simulate a runoff process. In the case of an “infiltration

slope of the distribution o (continuous lines in Figsla excess“_ also Ca”e? “Hortqn" runoft eroces@, ar_1d)_( are
and2b). It may appear more clearly on Figk and2b that cle_arly linked. If a sgturatlon excess” process is simulated,
the slope of the distribution of log F(y)—y tends towards C is related to t.he ramfalll amount .of egch event. The evolu-
0 as—log F (y) or y tend to infinity. The asymptote whe tion of the d¢n3|t)p(c|x) with x will, in this last case, depend
is uniformly distributed is— log F(y)—y=log(y) (see Ap- N the relation petween the intensity and the rainfall amount
pendix C1). pf an event. Since rectangular pulse even.ts are'con5|dered,
it will depend on the relation between the intensity and the
duration of the rainfall events. The conditional expectancy of
the rainfall volume of an event may decrease as its intensity
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Fig. 3. Example of peak specific discharge frequency distributions obtained with two DFFD models (thick lines) and comparison with the
distributions of the rainfall event intensities (thin lines).
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Fig. 4. Relations between the simulated peak discharge (CN=100), the simulated runoff rate C (CN=65) and the rainfall event 1-h maximum
rainfall intensity. Linear transfer model.

increases in the very tricky situation where the rainfall eventif ¢=1 belongs to the domain of the possible, which is the
duration and intensity are highly negatively correlated (casecase for most hydrological models if the rainfall spatial het-
tested by Goel et al., 2000). But usually, even if the rain-erogeneity is not considered, thap=1. In other words, the
fall event intensity and duration are slightly negatively cor- asymptotic statistical distribution of the peak discharges of a
related, the expectancy of the rainfall volume and thereforewatershed obtained through a DFFD framework will either
the expectancy of the “runoff rate” will increase as the rain- have the same shape parameter, and scale parameter in the
fall intensity of an event increases. Moreover, the event in-EV | case, than the distribution of the rainfall event intensi-
tensity distribution seems to control the asymptotic shape oties or be the distribution of the rainfall intensities.
the volume distribution@e Michele and SalvadqrR003. This result confirms and extends the conclusions drawn
It can therefore be foreseen, for “realistic” rainfall stochas-from the detailed analysis of some specific DFFD frame-
tic model and rainfall-runoff model combinations, that the works: i.e. for DFFD frameworks in which rainfall events are
runoff rate expectancy will have a general tendency to growconsidered as rectangular pulses, asymptotically “the shape
as the magnitude of the intensity of the rainfall event grows. parameter of the flood distribution is the same as that of the
The functionp(c|x) can have two types of behaviors as rainfa” (intensity) diStI’ibution" Oe l\/liChe|e and SaIVaeri
x tends to infinity. It can either converge towards a limit 2003. Figure3illustrates this for two previous DFFD tools.
density functionp*(c) defined over an intervdty, cp] with ~ Note that in the study of Eagleson, the runoff is supposed
c1<cp or |t can concentrate around one Vahée In th|S |ast to be produced on a pal’t of the total catchment area: the di-
case,Y is asymptotically equal to,X: i.e. the asymptotic ~ rect runoff producing area. The specific peak discharges have
distribution of the flood peak discharges is the distribution Peen computed considering this direct runoff producing area.
of the rainfall intensities multiplied by,. Let us add that

Hydrol. Earth Syst. Sci., 10, 23243 2006 www.hydrol-earth-syst-sci.net/10/233/2006/



E. Gaume: On the asymptotic behavior of flood peak distributions 237

140

120/ (a) r

mm/h

00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
Log(T) Log(T)

Fig. 5. Simulated flood peak (mm/h) of a theoretical impervious watershed (bold line) compared to the rainfall event maximum mean
intensities over various durations (other linggl) linear tranfer andb) kinematic wave.

3.2 Generalization to any type of rainfall representation  concentration appears to be about 1 h. for a discharge equal
to 20 mm/h and 30 min. for a discharge equal to 120 mm/h.

In the more general case, where the temporal variations of ooking at Fig.5b, it appears that the maximum mean inten-

rainfall intensities during an event are considered, the peakity of the rainfall event over a duration close to the time of

discharge expressed in mm/h can be higher than the mean ironcentration of the watershed still controls the shape of the

tensity of the event. The coefficie@tin Eq. (1) isnotlimited  distribution ofY,, in the non-linear transfer case. But then,

to 1 any more. But a formula, comparable to Ef).¢an be  the time of concentration depends on the discharge or the re-

proposed to summarize the rainfall-peak discharge relation. turn period.

Y =CY,, 3) Recalling the theoretical results of the first part of this pa-
per, the flood peak discharge distribution obtained with any

whereY,, represents the peak discharge of the watershed obrainfall-runoff model will asymptotically either (1) have the

tained for a runoff coefficient equal to 1: i.e. if the watershed same shape parameter, and scale parameter in the EV | case,

is supposed to be impervious. It is the maximum possiblethan the distribution of,Y,, if the density function of the co-

peak discharge of a watershed. Again, in E2), (he co-  efficientC tends to a dense function on the interial, cz],

efficient C is included in the intervalO, 1] if the baseflow  or (2) be the distribution of,Y,, if the density function ot

is not considered. Let us note that there is a link betweerconcentrates around asY,, tends to infinity.

the distribution ofY,, and the statistical characteristics of

the rainfall and particularly the so-called intensity-duration-

frequency curves. This relation depends on the transfer func4 Analysis of some simulation results

tion of the flood flows on the watershed.

If this transfer function is linear, the maximum possible Numerical simulations were conducted to illustrate the con-
peak discharge is highly correlated with the maximum meanclusions of the previous parts of this paper using a DFFD
rainfall intensity over a duration generally lower than the tool combining a 5-min. point rainfall stochastic model
time of concentration of the watershed (see Hg.for an  (Mouhous et a].2001) and a rainfall-runoff model presented
example on a theoretical watershed having a time of concenin Appendix Al. This rainfall-runoff model is simple and
tration of one hour). Hence, the statistical distributior¥gf  includes the so-called SCS-CN runoff production model and
is the distribution of the maximum mean rainfall intensities either a linear or a kinematic wave transfer function. The
over this duration (Fig5a). Just recall that the high correla- chosen theoretical watershed has a time of concentration
tion between peak discharge values and mean rainfall intenequal to one hour when the linear tranfer function is used
sity over a given duration when a constant runoff coefficient(see the high correlation between the peak discharge and
is used is at the basis of the development of the well knowrthe 100% runoff model in Figsla, 5a). Moreover, the ex-
rational method. pectancy of the ratio between the simulated peak discharge

If the transfer function is not linear, the link between and the 1-h maximum intensity previously not€dappears
the distribution ofY,, and the Intensity-duration-frequency to increase as the 1-h intensity increases due to the selected
curves is less direct (Fighb). When the “kinematic wave” runoff production model (Figdb). Its minimum possible
model is used, the time of concentration of the watershedsalue is close to the minimum runoff rate simulated by the
can decrease as the discharge and the water mean velocity i6CS-CN model before the transfer function is applied (bold
creases. For the chosen theoretical watershed and parametdire on Fig.4b). Due to the properties of the SCS-CN model,
used in the computations presented in FE, this time of  C converges towards 1 as the 1-h maximum intensity of an
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Fig. 6. Simulated flood peak (mm/h) distributions for CN=100 (thin line), CN=65 (bold line), CN=65 and modified SCS (epts)ear
tranfer andb) kinematic wave.

event and hence a§, (maximum peak discharge obtained 5 Discussion

when the watershed is impervious, i.e. CN=100) tends to-

wards infinity. According to the conclusions of the preceding

parts of this paper, the asymptotic distribution of the simu-5.1 On the “Gradex” method

lated peak discharge should therefore be the distribution of

Y,,. The simulation results (Fig6) indicate nevertheless

that this convergence is very slow when the standard SCSThe result concerning the asymptotic behavior of flood peak
CN model is used. Hydrological models simulating infiltra- distributions has some similarities with the “Gradex” theory
tion or saturation excess runoff generating processes will al(Naghettini et al. 1996 Guillot and Duband1967), popular
show an increase of the runoff coefficient expectancy within France and in some other countries. This theory states (1)
the mean rainfall intensity over a given duration. But, the that the distributions of the daily rainfall amount is exponen-
hydrological model and especially the production function tial, (2) that over a given return period value, the mean daily
has a major influence on the convergence speed of the sindischarge distribution will have the same slope on a semi-
ulated peak discharge distribution towards its asymptote andbg plot than the daily rainfall amount, if both are expressed
therefore on its shape for medium range return periods. To ilin the same unit, and (3) that the ratio between mean daily
lustrate this influence, a second series of computations wherand peak discharges is independent of the return period. But
conducted with the same rainfall-runoff model including a there are some differences.

modified version of the SCS model (see Appendix Al). The

conventional SCS model simulates a very progressive con- Firstly, no _hyppth_esis_ was done here about thgltypﬁ of
vergence of the runoff coefficient towards 1 as the rainfall & @symptotic distribution (EV 1 or EV II). Secondly, the

amount increases, behavior which seems not to be in accosh@Pe of the peak dischargeappears linked to the shape

dance with some recent observatio@a(me et al.2004). of the distribution ofY,, which is related to the so called

The proposed modified version of the SCS model Simu|ate§ntensity-duration-frequency curves rather than to the shape
a rapid evolution of the runoff coefficient over a given rain- of the mean daily rainfall amount distribution. Both would be

fall amount threshold. This behavior induces a change Oiasymptotically equivalent if the ratio between the quantiles

the convergence speed of the flood peak distribution towardS' Y= @nd of the mean daily rainfall amounts were constant,
its asymptote (Fig6). The flood peak distribution resulting Which is generally not the case.

from the DFFD framework has a strange “S” shape with two  Fing|ly, we have presented here an asymptotic result. The
extremes dominated by the pre and post-threshold behavior§1ape of the flood peak distribution and the convergence
of the rainfall-runoff model and a large transition phase with speed towards its asymptote are highly dependent on the dy-
a much higher slope or curvature than the asymptotic distriamics of the rainfall-runoff process summarized in the den-
bution. This is of course a purely theoretical example, but itsity function p(c|x). A large variety of FPD shapes can be
shows that flood peak distributions may have a large varietyyroduced especially if there are thresholds in the rainfall-
of shapes depending on the dynamics of the rainfall-runoffynoff relation as illustrated herein or previously by Siva-
process especially as far as the medium range return period&dan et al. (1990). Even if the asymptotic distributigp

are concerned. Considering the distance between the peak of the exponential type, its slope on a semi logarithmic pa-
discharge distributions observed for low return periods andper, which can be assimilated to the Gradex, is not necessar-
the asymptotic distributions, the range of possibilities is Cer-jly the maximum possible slope of the flood peak distribution
tainly quite large. as shown herein.
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Fig. 7. Empirical flood peak specific discharge distributions of the Clamoux river (French Mediterranean(@rbased on a series of 24
years of measured dai®) including the estimated peak discharges of the major floods since 1850 with their estimated ranges of uncertainty.
EV | (dotted line) and EV Il (continuous line) models calibrated on the 24 years of available measured peak discharges.

5.2 About statistical extrapolations lower than the maximum possible hundred year quantile. The

return period of the 1999 peak specific discharge may there-
The debate on the estimation of extreme values in hydrologyore be much lower than the value estimated through statisti-
is still lively (Koutsoyiannis 2004 Klemes 2000. The re-  cal extrapolations (i.e. of the order of 100 to a few hundred
sults presented herein provide some elements of discussiogears). A detailed analysis of the data existing on the major
on this issue. Concerning the quantile estimations of veryhistorical floods since 185®éyrastre et 312005 confirms

large return period floods, the distribution of the maximum the probably moderate return period of the Clamoux 1999
mean rainfall intensity over a duration of the order of the flood as illustrated on Fig. .

time of concentration of a watershed should be considered This examp|e is typ|ca| for small watersheds in the French
as the possible flood peak asymptotic distribution. Concernyediterranean areaP@yrastre et gl.2005 Gaume et al.

ing the estimation of medium return period flood quantiles,2004>_ The conclusion is that the “range of the possibili-
typically 50 to 500 years, the present paper does not leagies” for the shape of flood peak distributions is large and, of
to any new proposal. But the awareness of the distance be:ourse, not limited to the theoretical distributions generally
tween the asymptotic distribution and the low return periodysed for extrapolation purposes, as for instance the extreme
flood quantiles gives an idea of the range of the possibilities ajye distributions of type I or II. Thus, how meaningful is
for the shape of the flood peak distributions (i.e. for the wayit to extrapolate tendencies identified on short series of data
the actual distribution will converge towards its asymptote). for the estimation of larger return-period flood quantiles? As
This is one more argument to take with prudence any quantilenentioned in the introduction, DFFD tools due to their inher-
estimation uniquely based on statistical extrapolations. Lefnt simplifications, can hardly be considered as an efficient
us illustrate this last idea with the real example of the floodzjternative to the conventional statistical extrapolation meth-
peak distribution of a small river (watershed area of 46km ods. The uncertainties on estimated flood quantiles can only
located in the south of France (see Hy.This example will  pe really reduced by enlarging the studied data sets using the
also show that the simulated “S” shaped distribution (B)g.  available information on historical floods as illustrated here
is realistic. 24 years of measured discharges are availablgng/or combining various data sets in a regional approach.
on the Clamoux river. On 13 November 1999 an extremepoth, valuation of historical information and regional analy-
flood event occured whose estimated peak specific discharggis should, to our opinion, be systematically part of opera-

(16 mm/h) lies far over the measured ones. The extrapolatiofional hydrological studies. It is too seldom the case for the
based on the measured series leads to a return period for thigoment.

discharge of a few hundred thousand years if the EV Il dis-

tribution is used and of some hundred million years if the EV

| distribution is used. But none of these two return periodsg Conclusions

seem to be in accordance with other information available on

the Clamoux river: comparable floods have been observegh summary, it has been shown herein that:

on the same river during the last century. Moreover, the

100-year maximum mean rainfall intensity over two hours, (a) The asymptotic statistical distribution of flood peadks
estimated time of concentration of the Clamoux watershed obtained through a DFFD approach is of the same type
during the 1999 flood, is about 70 mm/h in this area. The es- and has the same shape parameter, and scale parame-
timated peak discharge of the 1999 flood is about four times ter in the exponential (EV ) case, as the distribution of
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the rainfall mean intensity for simple DFFD frame-
works, i.e. of the maximum possible peak discharge
for DFFD accounting for the temporal variations of the
intensity during the rainfall event. Of coursé, X and

Y,» must have the same units for this result to be valid.
In other words, the distribution df will appear linear
and with the same slope as the distributionXobr Y,

on a semi-log plot for exponential type distributions or
on a log-log plot for “extreme value” of type Il distribu-
tions. If the maximum possible value of ratibbetween

Y andY,, is co rather than 1, the same conclusions can
be drawn forY /c2.

(b) From a practical point of view the asymptotic properties
presented herein shed a new light on previous DFFD re-
sults as illustrated in Fig3. They also reveal that the
distribution of ¥, or more simply of the mean maxi-
mum rainfall intensity over a duration of the order of
the time of concentration of a watershed should be con-
sidered and used as a guideline for any extrapolation of
a flood peak distribution, especially for large return pe-
riods. It should be nevertheless taken into account thatig. A1. Representation of a watershed in the rainfall-runoff model.
the impact of the rainfall spatial heterogeneity has not
been considered herein.

(c) Finally, this mainly theoretical work, as other previ-
ous works Bouleay 1991 Klemes 2000, puts also in
question the common practice of flood quantiles’ esti-
mation consisting in extrapolating tendencies observed 10]
on generally relatively small measured peak discharge
series. It pleads for the systematization of the use of
the possible additional information in flood frequencies
studies through the valuation of data available on histor-
ical floods and regional flood frequency analysis.

12,

0.8

0.6

0.4]

0.2

Appendix A Presentation of the rainfall-runoff model 0-00 g s - = =
used in the DFFD numerical simulations P

The rainfall-runoff simulation results presented here have

been obtained with a simplified rectangular shaped waterfig. A2. Relation between the runoff coefficieait and the total
shed composed of two rectangular slopes and a central rivetinfall amountP: standard SCS model (bold line) and modified
reach having a rectangular cross-section (see Fig. A1l). Th&€CS model (dotted line).

main characteristics of the rainfall-runoff model used are as

follows: 1) the flood flows are assumed to be essentially

composed of surface runoff water, and other sources are set

aside, 2) The SCS (“soil conservation service”) model is used

to calculate the evolution of the mean runoff coefficient on

each sub-watershed during the storm event (se&Egand This SCS function shape has been selected for mathemat-

3) the flood flows can be either routed through the water-'CaI reasons. an a Sy”_‘pto“c_ convergence is the only poss!ble
solution for functions including one parameter only. But this

shed using a linear transfer function or the “kinematic wave” . .
model. The standard SCS model simulates a progressive arft ymptotic dynamics does not correspond to some recent hy-
: rological observationgdaume et a).2004 2003. There-

asymptotic growth of the runoff coefficiedt, towards 1 as fore, an other model including a threshold has been tested:

the rainfall amount increases (see Fig. A2). the SCS model is used to compute the runoff i&teuntil
S 2 it reaches 30% and the runoff rate is set equal to 1 over this
CG=1-\GToss) (AL threshold (Fig. A2).
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Appendix B Asymptotic distribution of ¥ when C is in- Equation B10) is equivalent to
dependent of X and X is exponentially distributed
F(y) ~ h(y)e ™ (B11)
Let us begin with the very simple case whérés uniformly
distributed over the intervdD, 1]. The survival function of ~ Of

the flood peakr’ then has the following form: logh(y)
log F(y) = —1y +logh(y) = —Xy(l — T) (B12)

1 poo
F(y)= / / re M dxdc (B1)
0 Jyfe with 2 (y) any function verifying lim_, . log 2 (y)/(Ay)=0.
or In the particular case whel@ is uniformly distributed over
1 . the interval[0, 1] and independent df, it can be shown that
F(y) = / e Mede. (B2)  h(y)=1/(ry) (see Appendix C1).
0 The same demonstration leads to a similar resuit ifas

We are looking for an approximation of this integral when any distribution independent of andY with a strictly posi-
y tends to infinity. One method consists of finding an upper, o density over the intervao, 1];

and a lower boundary for this integral that have the same

limit when y tends to infinity. Let us first note that /¢ is 1 o
an increasing function af. Therefore, obviously: F(y) =/0 p(c) f/ re dxdc (B13)
y/c
1
F@y) < ef)‘y"/ dc (B3) 1
0 F(y) =/ p(c)e /¢dc (B14)
or 0
log F(y) < —Ay. B4 1
gF(y) = -4y (B4) Fly) = / oY O/eHoglp(©O1/) 4, (B15)
Moreover, the functior—*¥/ takes positive values over the 0

interval[0, 1]. Then ) _
In this case, whatever the functigric), the term lo§p(c)]/y

F(y) > /1e”/°‘dc (B5) tends to O whery tends to infinity for any value of. Inte-
€ grals B2) and B15) have the same asymptotic behavior as
y tends to infinity.
Let us finally note, to be more general, that the function
1 p(c) can take non-zero values over a reduced intdeako]
F(y) > e M/e / de (86)  With O=c1=c2=<1. In this case the preceding developments
€ will obviously lead to the following asymptotic relation:

for any e in [0, 1]. Recalling thate=*¥/¢ is an increasing
function ofc:

or
A
F(y)=e ™/ (1—e) B7) logT(y) = C—z[l +0(1)] (B16)
or
log F(y) > —Ay(} — Iog(l——e)> (B8) Appendix C' Shape of the fuqctionh(x) when C is uni-
€ Ay formly distributed over the interval [0, 1]

for anye<1, as close to 1 as wished, the right hand term of
Eq. B8) tends to—\y/e wheny tends to infinity. We can
then write:

The mathematical developments of this appendix are due to
Alain Mailhot of the Institut National de la Recherche Scien-
N tifigue (Quebec, Canada) who suggested them during a dis-
— Ay > logF(y) > - [1+ o(1)] (B9)  cussion about the content of the present paper.

€ We are looking for an approximation of the following in-
where 0(1) stands for a function efthat tends to 0 whem tegral asy tends to infinity:
tends to infinity. Asy tends to infinity the lower boundary
of the inequality B9) can be taken as close to the upper one 1 iy /e
as desired. In other words, Idgy) converges to-iy asy | ) = / e e (C1)
tends to infinity (i.e. the flood peak distribution will asymp- ) ) . o
totically appear as a straight line with slopeon a conven-  Changing the variable in this integrak=iy/c and
tional semi-logarithmic plot). According to the inequality du=—y/c’dc leads to:
(B9), log F (y) has the following asymptotic shape.

log F(y) = —Ay[1+4 0o(D)]. B10) FO)=-2y Loo -

Ay e U
>du. (C2)
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This integral can be evaluated using integration by parts:

e ! Ay Ay p—u
F(y) = —Ay[ } + )»y/ du (C3)
U lyoo +oo U
or
+0o0 e U
F(y)=e ™ — ky/ du. (C4)
Ay u
The second term of EqQCH) has a well known Taylor expan-
sion:
e 1 2!
F(y)=e ™ -2 (1——+——...) C5
g " Ay ()2 (C5)
S0
o) e ( 1 2! 3! ) (C6)

F(y) = . ———

Ay ry ()2
We can then conclude that wherntends to infinity:

e
Fiy)~ —. (C7)

Ay

Appendix D  Asymptotic distribution of ¥ whenC is in-
dependent ofX and the statistical distribution of X is
an extreme value distribution of type Il (Fréchet)

The density function of the rainfall intensities has the follow-

ing form:

afx—a\" @D _(50y
P(x)zz< b > e b

(D1)

with «>0. If p(c) is the density function of the runoff rate

C, the survival function of the peak discharges is:

y/c=a

1 —o
P(Y >y) = F(y)/ p(c) (1 - e_(T) )dc. (D2)
0

—o

wheny tends

y/c—a

The terme_( b

) tendsto - <%)
to infinity. Then

1 _ —o
F(y)w/ p(c)(y/cb “) de.
0

This integral can be furthermore simplified whenends to
infinity:

(D3)

1 y\ @
Foy~ [ p<c>(—) de (04)
0 ch
or
1 y\
F(y)%/ p(c)c“(—) dc (D5)
0 b
which is equivalent to
A
F(y)%<z> /p(c)c"‘dc- (D6)
0
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«a is greater than 0 by definition of the EV Il distribution and
p(c) is the density function of a variable defined over the
interval [0, 1]:

1
/ p(oyde = 1. (D7)
0
Necessarily
1
0< / p(c)c®dc < 1. (D8)
0

Let A be the limit of this integral whery tends to infinity,
A €0, 1]

1
A= lim <f p(c)cadc).
y—>00 0

The result is much more simple than the one obtained in the
exponential case. Unlessis equal to zero, which is non-
realistic for a rainfall-runoff model since it implicates that
tends to zero when tends to infinity, the asymptote of the
survival function ofY is a EV Il function with the same shape
parameterg as the rainfall intensity survival function.

F(y) ~ A(%)
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