Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 1, issue 1
Hydrol. Earth Syst. Sci., 1, 93–100, 1997
https://doi.org/10.5194/hess-1-93-1997
© Author(s) 1997. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Hydrol. Earth Syst. Sci., 1, 93–100, 1997
https://doi.org/10.5194/hess-1-93-1997
© Author(s) 1997. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  31 Mar 1997

31 Mar 1997

Determination of evaporation from a catchment water balance at a monthly time scale

H. H. G. Savenije H. H. G. Savenije
  • International Institute for Infrastructural, Hydraulic and Environmental Engineering (IHE), P.O. Box 3015, 2601 DA, Delft, Netherlands

Abstract. A method is presented to determine total evaporation from the earth's surface at a spatial scale that is adequate for linkage with climate models. The method is based on the water balance of catchments, combined with a calibrated autoregressive rainfall-runoff model. The time scale used is in the order of decades (10 days) to months. The rainfall-runoff model makes a distinction between immediate processes (interception and short term storage) and the remaining longer-term processes. Besides the calibrated rainfall-runoff model and the time series of observed rainfall and runoff, the method requires a relation between transpiration and soil moisture storage. The method is applied to data of the Bani catchment in Mali, a sub-catchment of the Niger river basin.

Publications Copernicus
Download
Citation