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Abstract. Soil moisture measurements are needed in a large
number of applications such as hydro-climate approaches,
watershed water balance management and irrigation schedul-
ing. Nowadays, different kinds of methodologies exist for
measuring soil moisture. Direct methods based on gravimet-
ric sampling or time domain reflectometry (TDR) techniques
measure soil moisture in a small volume of soil at few par-
ticular locations. This typically gives a poor description of
the spatial distribution of soil moisture in relatively large
agriculture fields. Remote sensing of soil moisture provides
widespread coverage and can overcome this problem but suf-
fers from other problems stemming from its low spatial res-
olution. In this context, the DISaggregation based on Phys-
ical And Theoretical scale CHange (DISPATCH) algorithm
has been proposed in the literature to downscale soil mois-
ture satellite data from 40 to 1 km resolution by combin-
ing the low-resolution Soil Moisture Ocean Salinity (SMOS)
satellite soil moisture data with the high-resolution Normal-
ized Difference Vegetation Index (NDVI) and land surface
temperature (LST) datasets obtained from a Moderate Res-
olution Imaging Spectroradiometer (MODIS) sensor. In this
work, DISPATCH estimations are compared with soil mois-
ture sensors and gravimetric measurements to validate the
DISPATCH algorithm in an agricultural field during two dif-
ferent hydrologic scenarios: wet conditions driven by rainfall
events and wet conditions driven by local sprinkler irrigation.
Results show that the DISPATCH algorithm provides appro-
priate soil moisture estimates during general rainfall events
but not when sprinkler irrigation generates occasional het-
erogeneity. In order to explain these differences, we have ex-

amined the spatial variability scales of NDVI and LST data,
which are the input variables involved in the downscaling
process. Sample variograms show that the spatial scales as-
sociated with the NDVI and LST properties are too large to
represent the variations of the average soil moisture at the
site, and this could be a reason why the DISPATCH algo-
rithm does not work properly in this field site.

1 Introduction

Soil moisture measurements taken over different spatial and
temporal scales are increasingly required in a wide range of
environmental applications, which include crop yield fore-
casting (Holzman et al., 2014), irrigation planning (Vellidis
et al., 2016), early warnings for floods and droughts (Koriche
and Rientjes, 2016), and weather forecasting (Dillon et al.,
2016). This is mostly due to the fact that soil moisture con-
trols the water and energy exchanges between key environ-
mental compartments (atmosphere and earth) and hydrolog-
ical processes, such as precipitation, evaporation, infiltration
and runoff (Ochsner, 2013; Robock et al., 2000).

There are several applications in which soil moisture mea-
surements have been shown to provide relevant information
(Robock et al., 2000). For example, in environmental appli-
cations, soil moisture is typically used for defining the water
stress occurring in natural and human systems (Irmak et al.,
2000) or for quantifying nitrate leaching and drainage qual-
ity (Clothier and Green, 1994). Here, we highlight that soil
moisture measurements from the root zone yields important
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information for field irrigation scheduling, determining to a
great extent the duration and frequency of irrigation needed
for plant growth as a function of water availability (Blonquist
et al., 2006; Jones, 2004; Campbell, 1982).

Soil moisture is highly variable in space and time, mainly
as a result of the spatial variability in soil properties (Haw-
ley, 1983), topography (Burt and Butcher, 1985), land uses
(Fu and Gulinck, 1994), vegetation (Le Roux et al., 1995)
and atmospheric conditions (Koster and Suarez, 2001). As a
result, soil moisture data exhibits a strong scale effect that
can substantially affect the reliability of predictions, depend-
ing on the method of measurement used. For this reason, it
is important to understand how to measure soil moisture for
irrigation scheduling.

Nowadays, available techniques for measuring or estimat-
ing soil moisture can provide data either at a small or at a
large scale. Gravimetric measurements (Gardner, 1986) esti-
mate soil moisture by the difference between the natural and
the dry weight of a given soil sample. They are used as a ref-
erence value of soil moisture for sensor calibration (Starr and
Paltineanu, 2002) or soil moisture validation studies (Bosch
et al., 2006; Cosh et al., 2006). The main disadvantage of
this method is that these measurements are time-consuming;
users have to go to the field to collect soil samples and
place them in the oven for a long time. Soil moisture sen-
sors such as time domain reflectometry sensors (Clarke Topp
and Reynolds, 1998; Schaap et al., 2003; Topp et al., 1980) or
capacitance sensors (Bogena et al., 2007; Dean et al., 1987)
are capable of measuring soil moisture continuously using
a data logger, thereby enabling the final user to save time.
Soil moisture sensors are especially useful for studying pro-
cesses at a small scale, but suffer from the typical low num-
ber of in situ sensors that provide an incomplete picture of a
large area (Western et al., 1998). Nevertheless, the use of soil
moisture sensors is a common practice for guiding irrigation
scheduling in cropping field systems (Fares and Polyakov,
2006; Thompson et al., 2007; Vellidis et al., 2008).

Remote sensing can estimate soil moisture continuously
over large areas (Jackson et al., 1996). In this case, soil
moisture estimations refer to the near-surface soil mois-
ture (NSSM), which represents the first 5 cm (or less) of
the top soil profile. In recent years, remote sensing tech-
niques have improved and diversified their estimation, mak-
ing them an interesting tool for monitoring NSSM and other
variables such as the Normalized Difference Vegetation In-
dex (NDVI) and the land surface temperature (LST). Dif-
ferent satellites exist that are capable of estimating NSSM:
the Soil Moisture Active Passive (SMAP) satellite, the Ad-
vanced Scatterometer (ASCAT) remote sensing instrument
on board the Meteorological Operational (METOP) satellite,
the Advanced Microwave Scanning Radiometer 2 (AMSR2)
instrument on board the Global Change Observation Mission
1-Water (GCOM-W1) satellite, and the Soil Moisture and
Ocean Salinity (SMOS) satellite launched in November 2009
(Kerr et al., 2001). The SMOS satellite has global coverage

and a revisit period of 3 days at the Equator, giving two soil
moisture estimations, the first one taken during the ascend-
ing overpass at 06:00 LST (local solar time) and the second
one during the descending overpass at 18:00 LST. The SMOS
satellite is a passive 2-D interferometer operating at L-band
frequency (1.4 GHz) (Kerr et al., 2010). The spatial resolu-
tion ranges from 35 to 55 km, depending on the incident an-
gle. Its goal is to retrieve NSSM with a target accuracy of a
0.04 m3 m−3 (Kerr et al., 2012). Since SMOS NSSM values
have been validated on a regular basis since the beginning of
its mission (Bitar et al., 2012; Delwart et al., 2008), they is
considered suitable for hydro-climate applications (Lievens
et al., 2015; Wanders et al., 2014).

The relatively large variability of soil moisture compared
to the low resolution of SMOS-NSSM data hinders the di-
rect application of this method to irrigation scheduling. How-
ever, the need for estimating NSSM with a resolution higher
than 35–55 km using remote sensing has increased for dif-
ferent reasons: (1) data are freely available, (2) a field instal-
lation of soil moisture sensors is not necessary, and (3) no
specific maintenance is needed. For these reasons, in the last
few years, different algorithms have been developed to down-
scale remote sensing soil moisture data to tens or hundreds
of meters.

Chauhan et al. (2003) developed a Polynomial fitting
method which estimates soil moisture at 1 km resolution
(Carlson, 2007; Wang and Qu, 2009). This method links soil
moisture data with surface temperature, vegetation index and
albedo. It does not require in situ measurements but cannot
be used under cloud coverage conditions. The improvements
in the detection method reported by Narayan et al. (2006)
downscales soil moisture at 100 m resolution. This is an op-
timal resolution for agricultural applications, but the method
is highly dependent on the accuracy of its input data. The
same problem is attributed to the Baseline algorithm for the
SMAP satellite (Das and Mohanty, 2006), which downscales
soil moisture at 9 km resolution. These algorithms have to be
validated using in situ measurements. For this purpose, most
studies use soil moisture sensors installed at the top soil pro-
file, i.e., the first 5 cm of soil (Albergel et al., 2011; Cosh et
al., 2004; Jackson et al., 2010), while others use gravimet-
ric soil moisture measurements (Merlin et al., 2012) or the
combination of both methodologies (Robock et al., 2000).
Satellite soil moisture has recently been used to provide irri-
gation detection signals (Lawston et al., 2017), quantify the
amount of water applied (Brocca et al., 2018; Zaussinger
et al., 2018) and estimate the water use (Zaussinger et al.,
2018). All these deal with relatively homogeneous and ex-
tensive irrigation surface coverages (several kilometers).

Other satellites, such as Sentinel-1, can estimate NSSM
at 1 km resolution (Bauer-Marschallinger et al., 2018; Hor-
nacek et al., 2012; Mattia et al., 2015; Paloscia et al., 2013).
Sentinel-1 provides two kinds of products, the first one is the
Single Look Complex (SLC) algorithm and the second one is
the Ground Range Detected (GRD) algorithm. The latter can
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be used for solving a wide range of problems related to Earth
surface monitoring, such as soil moisture, but it is not a direct
measurement and therefore data processing is needed. In this
case, the GRD product is converted into radar backscatter
coefficients and then into decibels to estimate soil moisture.
Usually, these conversions are cumbersome because these
kind of measurements have surface roughness and vegeta-
tion influence that affect the signal (Garkusha et al., 2017;
Wagner et al., 2010).

The DISPATCH method (DISaggagregation based on
Physical And Theoretical CHange) (Merlin et al., 2008,
2012) is an algorithm that downscales SMOS NSSM data
from 40 km (low resolution) to 1 km resolution (high res-
olution). This algorithm uses Terra and Aqua satellite data
to estimate NDVI and LST twice a day using the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) sensor.
These estimations have a resolution of 1 km and can be con-
ducted only if there is no cloud cover. This downscaling pro-
cess provides the final user with the possibility of estimating
NSSM using remote sensing techniques at high resolution.
DISPATCH successfully reveals spatial heterogeneities such
as rivers, large irrigation areas and floods (Escorihuela and
Quintana-Seguí, 2016; Malbéteau et al., 2015, 2017; Molero
et al., 2016) and it has also been validated (Malbéteau et al.,
2015; Merlin et al., 2012; Molero et al., 2016) in fairly large
and homogeneous irrigation areas, but it has not been applied
in complex settings with spatially changing hydrologic con-
ditions such as those representing a local irrigation field.

In this work, we evaluate the value of remote sensing in
agricultural irrigation scheduling by comparing in situ soil
moisture data obtained from gravimetric and soil moisture
sensors, with soil moisture data determined by downscaling
remote sensing information with the DISPATCH algorithm.

Study area

The study area shown in Fig. 1 is located in the village of
Foradada (1.015◦ N, 41.866◦W), in the Segarra–Garrigues
(SG) system (Lleida, Catalonia). The SG system is an im-
portant irrigation development project currently being car-
ried out in the province of Lleida, Catalonia, which involves
converting most of the current dry-land fields into irrigated
fields. Its construction enables 1000 new hectares with a
long agricultural tradition to be irrigated. To achieve this, an
85 km long channel was constructed to supply water for irri-
gation. At present, approximately 16 000 irrigators are poten-
tial beneficiaries of these installations. However, most farm-
ers have not yet installed this irrigation system, which means
that the SG systems can still be regarded as dry land.

The Urgell area is located in the west of the SG system.
This area has totally different soil moisture conditions, es-
pecially during the summer season when the majority of
fields are currently irrigated. This gives rise to two clearly
distinguishable wet and dry soil moisture conditions. Fig-
ure 1 shows the Foradada field, which represents 25 ha of

a commercial field irrigated by a solid set sprinkler irriga-
tion system distributed across 18 different irrigation sectors.
The soil texture, in a single point, is 65.6 % clay, 17.6 % silt
and 16.8 % sand. Every year two different crops are grown,
the first one during the winter and spring seasons, when wet
conditions are maintained by precipitation, and the second
one during the summer and autumn seasons, when wet con-
ditions are maintained by sprinkler irrigation. The Foradada
field is thus one of the few irrigated fields located within the
SG system. Consequently, this field has soil moisture con-
ditions similar to those in the surrounding area during the
winter and spring season, but completely different conditions
during the summer and autumn seasons. This makes this site
unique for assessing remote sensing in a distinct isolated ir-
rigation field.

2 Materials and methods

2.1 In situ soil moisture measurements

A total of nine intensive and strategic field campaigns were
conducted in the study area during 2016: DOY42, DOY85,
DOY102, DOY187, DOY194, DOY200, DOY215, DOY221
and DOY224. During each field campaign, disturbed soil
samples were collected from the top soil profile (0–5 cm
depth) for measuring gravimetric soil moisture data. A total
of 101 measurement points, depicted in Fig. 1, were defined
around the field. They are divided into two different kinds of
points: (1) cross section points – 75 points defined to repre-
sent the spatial variability of soil moisture in different cross
sections (in these cross sections, points are separated by 9,
16 and 35 m); (2) support points – 26 points defined to com-
plement information measured from cross sections, thereby
adding and supporting information about the spatial variabil-
ity across the field. Each soil sample is analyzed using the
gravimetric method for measuring gravimetric soil moisture
content, which is transformed to volumetric soil moisture
content using bulk density measurements (Letelier, 1982).
Daily averages of gravimetric measurements and their stan-
dard deviations were computed to represent the soil moisture
associated with the entire field site.

Soil moisture was also measured using capacitive EC-5
sensors (METER Group, Pullman, WA, USA), previously
calibrated in the laboratory (Star and Paltineanu, 2002). As
Fig. 1 shows, a total of five control points were installed
across one of the three gravimetric cross sections. Each con-
trol point represents a different irrigation sector of the field.
Soil moisture sensors were installed at 5 cm depth, taking
into account the measured volume of these sensors. Their ac-
curacy is ±0.03 cm3 cm−3 (Campbell and Devices, 1986).
They were connected to an EM50G data logger (METER
Group, Pullman, WA, USA) that registers soil moisture every
5 min.
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Figure 1. Location of the Foradada field site within the Segarra-Garriga irrigation system and distribution of soil moisture measurement
points. Gravimetric measurement points are arranged with cross section points in green and support points in yellow. The location of EC-5
sensors are represented in red.

2.2 DISPATCH soil moisture measurements

In this section we briefly describe the DISPATCH algorithm.
Further details can be found in Merlin et al. (2013) and refer-
ences therein. The DISPATCH algorithm aims to downscale
NSSM data obtained from SMOS at 40 km resolution to 1 km
resolution. The method assumes that NSSM is a linear func-
tion of the soil evaporative efficiency (SEE), which can be
estimated at high resolution (1 km) from the acquisition of
two products obtained from MODIS, i.e., LST and NDVI
datasets. This MODIS-derived SEE is further considered as a
proxy for the NSSM variability within the SMOS pixel. The
estimation of SEE is assumed to be approximately constant
during the day given clear sky conditions. The downscaling
relationship is given by Eq. (1):

θHR = θSMOS+θ
′
HR (SEESMOS)×(SEEHR−SEESMOS) , (1)

where θSMOS is the low-resolution SMOS soil moisture data,
SEEHR is the MODIS-derived SEE at a high resolution
(1 km), SEESMOS is the average of SEEHR within the SMOS
pixel at a low resolution (40 km), and θ ′HR (SEESMOS) is
the partial derivative of soil moisture with respect to the
soil evaporative efficiency at high resolution evaluated at
the SEESMOS value. This partial derivative is typically es-
timated by using the linear soil evaporative efficiency model
of Budyko (1956) and Manabe (1969), which is defined in
Eq. (2):

θHR = SEEHR× θp, (2)

where θHR represents the soil moisture of the top soil layer
(0–5 cm) at high resolution, and θp is an empirical parameter

that depends on soil properties and atmospheric conditions.
The soil evaporation efficiency at high-resolution SEEHR is
estimated as a linear function of the soil temperature at high
resolution (Ts,HR):

SEEHR =
Ts,max− Ts,HR

Ts,max− Ts,min
. (3)

The soil temperature at high resolution is estimated by parti-
tioning the MODIS surface temperature data (LST) into the
soil and the vegetation component according to the trapezoid
method of Moran et al. (1994). This also requires an estima-
tion of the fractional vegetation cover, which is calculated
from the NDVI data. Ts,min and Ts,max are the soil tempera-
ture end-members (Merlin et al., 2012).

In this work, the DISPATCH algorithm has been applied
during the period from DOY36 to DOY298 of 2016 to es-
timate NSSM at 1 km resolution in the Foradada field site.
DISPATCH provides a daily NSSM pixel map (regular grid).
The Foradada field site is entirely included in one pixel. In
this pixel, 51.5 % of the total area corresponds to irrigated
area. The remaining portion of the pixel corresponds to dry
land (shown in Fig. 2).

2.3 Image spatial resolution and spatial variability

The information contained in a satellite image is character-
ized here by two properties: the spatial resolution and the
spatial variability of the image attributes. The spatial reso-
lution of a satellite image is the ground area represented by
each pixel, i.e., the raster cell size. It is essentially the rep-
resentative support volume chosen to describe the variations
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Figure 2. The DISPATCH grid representing the Foradada field, out-
lined in dark blue, irrigated fields in light blue, and dry land in light
red.

of the attributes of interest at the ground surface. This is typ-
ically determined based on the type of satellite sensor. The
spatial variability refers to the variations of the attributes pre-
sented in the image at the ground surface, e.g., patterns of
spatial continuity, size of objects in the scene, and so on. In
random field theory and geostatistics, the spatial variability
is mainly characterized by the covariance function or by its
equivalent, the semivariogram, which is defined by (Journel
and Huijbregts, 1978):

γ (h)=
1
2
E
{

[Z(x+h)−Z(x)]2
}
, (4)

whereZ(x) is the random variable at the x position, andE {·}
is the expectation operator. Essentially, the semivariogram is
a function that measures the variability between pairs of vari-
ables separated by a distance h. Very often, the correlation
between two variables separated by a certain distance disap-
pears when |h| becomes too large. At this instant, γ (h) ap-
proaches a constant value. The distance beyond which γ (h)
can be considered to be a constant value is known as the
range, which represents the transition of the variable to the
state of negligible correlation. Thus, the range can ultimately
be seen as the size of independent objects in the image. If the
pixel size is smaller than 10 times the minimum range (in the
absence of the nugget effect), then neighboring pixels will
be alike, containing essentially the same level of information
(Journel and Huijbregts, 1978). This will be a critical point in
the discussion of the results later on. We note that the spatial
resolution and the spatial variability are two related concepts.
Several authors note that a rational choice of the spatial reso-
lution for remote sensing should be based on the relationship
between spatial resolution and spatial dependence (Atkinson
and Curran, 1997; Curran, 1988). However, since this is not
the usual procedure, the spatial resolution can be inappro-
priate in some cases or provide unnecessary data in others
(Atkinson and Curran, 1997; Woodcock and Strahler, 1987).

3 Results

3.1 General observations

One of the main advantages of our experiment is that remote
sensing soil moisture data is evaluated during two different
hydrologic periods of the same year in a given agriculture
field site. The first period represents crop growth with soil
wet conditions caused by natural rainfall events (without irri-
gation). This period occurs during the winter and spring sea-
son, i.e., from February to June. The following period occurs
during the dry season with artificially created wet soil condi-
tions caused by sprinkler irrigation operating to satisfy crop
water requirements during the summer and autumn season,
from June to October. In contrast to the rainfall events, sprin-
kler irrigation creates a local artificial rainfall event using
several rotating sprinkler heads. The comparisons of these
two hydrologic periods allow us to evaluate the effect of lo-
cal sprinkler irrigation on remote sensing soil moisture esti-
mations.

Figure 3 compares gravimetric and soil moisture sensor
measurements with the DISPATCH soil moisture estimates
obtained from remote sensing data during the first period of
time (without irrigation). We note that the comparison here
is not between the point gravimetric measurements (with a
support volume of few centimeters) and the satellite informa-
tion (1 km in resolution). Instead, we compare the average of
these point measurements over the entire field site (very well
distributed with more than 100 measurement points) with the
satellite information. The average of the soil moisture is rep-
resentative of the entire irrigated area associated with the
Foradada field site. Consequently, these two variables have
similar support scale and are therefore comparable. Error
bars in the gravimetric measurements represent the standard
deviation of all the measurements obtained in 1 day. In addi-
tion, the area between the light and dark green lines in this
figure displays the difference between the daily minimum
and maximum values of soil moisture data obtained from the
five EC-5 sensors. We note that the average of the gravimet-
ric soil moisture data always lies within this region. This sup-
ports the use of this information to complement soil moisture
data on days where no gravimetric sampling is available. The
error bars associated with DISPATCH data refer to the stan-
dard deviation obtained with two daily SMOS estimations
and four MODIS data (two at) 06:00 LST and two more at
18:00 LST). To better appreciate tendencies, the same infor-
mation is also presented as normalized relative soil moisture,
i.e., (θ−θmin)/(θmax−θmin), where θmin and θmax are the min-
imum and maximum values of the soil moisture time series
data obtained with the EC-5 sensors. Results show that DIS-
PATCH estimates can properly detect the relative increase in
soil moisture estimates caused by rainfall events. Note for in-
stance that all methods produce a similar relative increase in
soil moisture signal after the occurrence of a strong rainfall
event. In absolute terms, we see that DISPATCH slightly un-
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Figure 3. Comparison of average gravimetric soil moisture measurements (red) with the DISPATCH soil moisture estimations (yellow) and
the daily maximum and minimum soil moisture sensor measurements (green) during the first hydrologic period (soil wet conditions caused
by rainfall events only).

derestimates the true value of soil moisture but this could be
attributed to small differences between the support volume of
the field site and the spatial resolution of the satellite image.

A similar analysis is shown in Fig. 4, which compares
gravimetric and sensor soil moisture measurements with
DISPATCH soil moisture estimations during the second pe-
riod (wet soil conditions maintained by sprinkler irrigation).
In contrast to our previous results, it can be seen that the
DISPATCH dataset is essentially not sensitive to sprinkler
irrigation even though there is a proper response to sporadic
small rainfall events. Likewise, the relative increase in soil
moisture measurements also shows that sprinkler irrigation
does not affect the DISPATCH estimation. Thus, even though
the DISPATCH estimations seem to properly respond to rain-
fall events during the first period, irrigation operating at the
Foradada field scale remains undetected during the second
period. The DISPATCH dataset is not sensitive to irrigation
and merely indicates that soil dry conditions exist at a larger
scale.

This can also be seen from a different perspective by look-
ing at the scatter plot between the average of the normalized
relative soil moisture data obtained with the EC-5 sensors
and the corresponding DISPATCH measurement determined
on the same day. Figure 5 shows the scatter plots obtained
during rainfall events and irrigation period. We note that
even though a clear tendency is seen during rainfall events
(R2
= 0.57), no correlation seems to exist during irrigation

(R2
= 0.04). We conclude then that the DISPATCH dataset

provides representative estimates of soil moisture at a lower
resolution than expected.

3.2 Analysis and discussion

We seek to answer the important question of why the DIS-
PATCH soil moisture estimates obtained by downscaling
satellite information from 40 to 1 km of resolution are not
sensitive to sprinkler irrigation in this case. The following
possible sources of discrepancies can be identified: (i) errors
associated with the approximations used in the DISPATCH
downscaling formulation, (ii) differences in the scale of ob-
servations, (iii) low quality of information associated with
DISPATCH input variables, and (iv) poor relationship be-
tween irrigation fluctuations and DISPATCH input variables
dynamics. We concentrate the analysis on (ii) and (iii). First,
we note that the DISPATCH resolution of 1 km is similar to
the characteristic scale of the irrigated area at the Foradada
field site and therefore a better performance was expected.
The extent of the irrigated area in the DISPATCH pixel size
of interest is 51.5 % (see Fig. 2). Given that soil moisture is a
linear property, we contend that this cannot explain the neg-
ligible relative increase in soil moisture obtained during irri-
gation. Then, we examine the semivariograms of the differ-
ent input variables involved in the downscaling process, i.e.,
the NDVI and the LST properties provided by the MODIS
sensor. The NDVI and LST semivariograms were respec-
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Figure 4. Comparison of average gravimetric soil moisture measurements (red) with the DISPATCH soil moisture estimations (yellow)
and the daily maximum and minimum soil moisture sensor measurements (green) during the second hydrologic period (soil wet conditions
caused by irrigation). The top figure shows the intensity of precipitation and irrigation.

Figure 5. Scatter plot between the average of the normalized soil moisture obtained with EC-5 sensors and the DISPATCH measurements
obtained during both hydrologic scenarios, rainfall events and irrigation period.

tively estimated from the MOD13A2 and MOD11A1 product
data, which can be freely downloaded from the Google Earth
Engine website (https://earthengine.google.com, last access:
15 January 2017). We selected daily representative images of
April, June and August. The April image describes a general
rainfall event in the region, the June image shows when lo-
cal irrigation starts in the Foradada field, and finally the Au-
gust image represents when the crop is well developed and
frequent irrigation is needed. Experimental semivariograms
have been fitted with a theoretical model (spherical and expo-

nential models for the LST and NDVI, respectively), which
can be formally expressed as Eqs. (5) and (6):

γLST (h)= c11Sph
(
|h|

a11

)
+ c12

[
1− cos

(
|h|

a12
π

)]
, (5)

γNDVI (h)= c21Exp
(
|h|

a21

)
+ c22Exp

(
|h|

a22

)
+ c23

[
1− cos

(
|h|

a23
π

)]
, (6)
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Table 1. Random function model parameters of LST semivariograms.

LST

Variogram Hole effect

Month Model Sill (c11) Range (a11) Sill (c12) Range (a12)

April Spheric 8.4 46 000 – –
June Spheric 7.5 22 000 1.5 25 000
August Spheric 14 32 000 2 29 000

Table 2. Random function model parameters of NDVI semivariograms.

NDVI

Variogram Hole effect

Month Model Sill (c21) Range (a21) Sill (c22) Range (a22) Sill (c23) Range (a23)

April Exponential 0.013 8000 0.02 55 000 – –
June Exponential 0.013 35 000 – – 0.22 28 000
August Exponential 0.015 36 000 – – 0.21 28 000

Figure 6. LST and NDVI experimental and theoretical semivari-
ograms associated with April (blue), June (green) and August (red).

where cij are constant coefficients that represent the contri-
bution of the different standard semivariogram models, and
aij denotes the corresponding ranges of the different struc-
tures. The LST and NDVI experimental and theoretical semi-
variograms are shown in Fig. 6. The parameters adopted in
the random function model are summarized in Tables 1 and
2. The analysis determines a nested structure with a posi-
tive linear combination between isotropic stationary semivar-
iogram models and the hole effect model. Hole effect struc-
tures most often indicate a form of periodicity (Pyrcz and
Deutsch, 2003). In our case, this periodicity reflects the pres-
ence of areas with different watering and crop growth con-

ditions, i.e., in contrast to the dry-land conditions in the SG
area, the Urgell area is based on irrigation.

The spatial variability of NDVI and LST vary with time
according to changes in hydrologic conditions. In April, the
semivariogram of NDVI displays more variability and less
spatial continuity due to the differences in growth rate and
crop type conditions existing at the regional scale during the
wet season (controlled by rainfall events). On the other hand,
the spatial dependence of LST is more significant in Au-
gust. Importantly, results show that the scale of variability
(range) associated with MODIS data during the dry season,
when a controlled amount of water by irrigation is applied,
ranges between 35 and 36 km for the NDVI and between 22
and 32 km for the LST. Recalling the discussion provided in
Sect. 2.3., this means that the size of independent objects in
the NDVI and LST images is about 30 km and that insignifi-
cant spatial variations of NDVI and LST values are expected
below 1/10 of this size. This suggests that the NDVI and
LST products provided by MODIS cannot detect differences
between neighboring pixels with a size of 1 km.

To further corroborate this point, Fig. 7 compares the tem-
poral evolution of LST and NDVI obtained from two ad-
joining MODIS pixels: the Foradada pixel, where Foradada
is located, and its northwest neighboring pixel. Note that
the neighboring pixel corresponds to an area that is not
irrigated. Data were downloaded using MOD13A2 and
MOD11A1 products from the Google Earth Engine web-
site, from DOY036 to DOY298. In general, based on DIS-
PATCH suppositions, irrigation in an agriculture field site
should produce a decrease in LST values as a consequence of
uniform irrigation over the entire field site and an increase in
NDVI due to well-developed crop growth conditions. How-
ever, Fig. 7 shows the same dynamics and similar values in
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Figure 7. Temporal evolution of LST and NDVI obtained at the
Foradada pixel and its neighboring northwest pixel situated 2 km
away.

both pixels even when irrigation is applied. Results show that
the LST and NDVI information can detect neither the sprin-
kler irrigation nor the crop growth as a consequence of irri-
gation in this case. We finally note that these results suggest
that the resolution of LST and NDVI is not appropriate in this
case but can also express that these two variables are simply
not sensitive to irrigation because they only provide infor-
mation about the status of the crop and land surface. Further
research is needed in this sense.

4 Conclusions

We analyze the value of remote sensing and the DISPATCH
downscaling algorithm for predicting soil moisture variations
in an irrigated field site of size close to image resolution. The
DISPATCH algorithm based on the NDVI and LST data ob-
tained from the MODIS satellite is used for downscaling the
SMOS information and transforming the SMOS soil mois-
ture estimations from a resolution of 40 to 1 km. These esti-
mates are then compared with average gravimetric and soil
moisture sensor measurements taken all over the field site.
Results have shown that in this case the downscaled soil
moisture estimations are capable of predicting the variations
in soil moisture caused by rainfall events but fail to reproduce
the temporal fluctuations in the average water content caused
by local irrigation. To provide insight into this problem, we
examine the spatial variability of the different input variables

involved, i.e., the NDVI and LST. Results indicated that the
size of individual objects in the NDVI and LST images is too
large to be able to adequately represent the variations of the
average water content at the site. This effect is not signifi-
cant during rainfall events because the typical spatial scale
of rainfall events is much larger than the size of the irrigated
field site.

From a different perspective, these results also suggest that
irrigation scheduling based on satellite information coupled
with the DISPATCH downscaling algorithm might be appro-
priate in regions of the world with extensive irrigation sur-
face coverage, larger than approximately 10 km (e.g., Pun-
jab basin). However, care should be taken when directly ap-
plying this method as its performance will strongly depend
on the spatiotemporal variation of irrigation within the area.
These variations can generate occasional areas with different
hydrologic scenarios and behaviors leading to the failure of
the soil moisture prediction method.
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